精英家教网 > 初中数学 > 题目详情

如图,△ABC与△ABD相迭,且AB=AC=BD,又AC与BD交于E且AC⊥BD,则∠C+∠D=________.

135°
分析:先根据等腰三角形的性质得出∠ABC=∠C,∠BAD=∠D,再由垂线的定义得出∠CBE=90°-∠C,∠DAE=90°-∠D,然后由角的和差得出∠ABE=2∠C-90°,∠BAE=2∠D-90°,最后根据∠ABE+∠BAE=90°,即可求出∠C+∠D的度数.
解答:∵AB=AC,AB=BD,
∴∠ABC=∠C,∠BAD=∠D.
∵AC⊥BD,
∴∠CBE=90°-∠C,∠DAE=90°-∠D,
∴∠ABE=∠ABC-∠CBE=2∠C-90°,∠BAE=∠BAD-∠DAE=2∠D-90°,
∵∠ABE+∠BAE=90°,
∴2∠C-90°+2∠D-90°=90°,
∴∠C+∠D=135°.
故答案为135°.
点评:本题主要考查了等腰三角形的性质,垂线的定义,用含∠C、∠D的代数式分别表示∠ABE与∠BAE是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,△ABC与△ADC关于直线AC对称,连接BD,若已知四边形ABCD的面积是125,AC=25,则BD的长为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

22、如图,△ABC与△ADE是两个大小不同的等腰直角三角形,B、C、E在同一条直线上,连接CD.
(1)证明:△ABE≌△ACD;
(2)CD与BE是否垂直?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,△ABC与△DEF均为等边三角形,O为BC、EF的中点,则AD:BE的值为(  )
A、
3
:1
B、
2
:1
C、5:3
D、不确定

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC与△ABD都是等边三角形,点E,F分别在BC,AC上,BE=CF,AE与BF交于点G.
(1)求∠AGB的度数;
(2)连接DG,求证:DG=AG+BG.

查看答案和解析>>

科目:初中数学 来源: 题型:

29、如图,△ABC与△A′B′C′关于直线MN对称,△A′B′C′与△A″B″C″关于直线EF对称.
(1)画出△ABC和直线EF;
(2)若直线MN和EF相交于点O,直线MN、EF所夹的锐角设为α,猜想∠BOB″与α之间的数量关系,并说明理由.

查看答案和解析>>

同步练习册答案