精英家教网 > 初中数学 > 题目详情
(2006•河北)图1是某学校存放学生自行车的车棚的示意图(尺寸如图所示),车棚顶部是圆柱侧面的一部分,其展开图是矩形.图2是车棚顶部截面的示意图,所在圆的圆心为O.车棚顶部是用一种帆布覆盖的,求覆盖棚顶的帆布的面积.(不考虑接缝等因素,计算结果保留π)

【答案】分析:根据题意,由圆的基本性质,可通过作辅助线建立模形,利用垂径定理解答,也可用相交弦定理来解.
解答:解:连接OB,过点O作OE⊥AB,垂足为E,交于F,如图,
由垂径定理,可知:E是AB中点,F是中点,
∴EF是弓形高,
∴AE=AB=2,EF=2,
设半径为R米,则OE=(R-2)米,
在Rt△AOE中,由勾股定理,得R2=(R-2)2+(22
解得R=4,
∵sin∠AOE=
∴∠AOE=60°,
∴∠AOB=120度.
的长为=π(m),
∴帆布的面积为π×60=160π(平方米).
点评:本题考查用方程解几何问题,方程是解决几何有关计算问题的有效的方法和工具,通常结合勾股定理的形式出现.
部分学生遇此问题,不能将实际问题抽象为数学问题.突破方法:联系实际,将车棚顶部展开得长方形,其长为车棚长,宽为弧AB长.解题关键:在利用数学知识解决实际问题时,要善于把实际问题与数学中的理论知识联系起来,能将生活中的问题抽象为数学问题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2006•河北)探索:
在如图1至图3中,△ABC的面积为a.

(1)如图1,延长△ABC的边BC到点D,使CD=BC,连接DA.若△ACD的面积为S1,则S1=
a
a
(用含a的代数式表示);
(2)如图2,延长△ABC的边BC到点D,延长边CA到点E,使CD=BC,AE=CA,连接DE.若△DEC的面积为S2,则S2=
2a
2a
(用含a的代数式表示);
(3)在图2的基础上延长AB到点F,使BF=AB,连接FD,FE,得到△DEF(如图3).若阴影部分的面积为S3,则S3=
6a
6a
(用含a的代数式表示).
发现:
像上面那样,将△ABC各边均顺次延长一倍,连接所得端点,得到△DEF(如图3),此时,我们称△ABC向外扩展了一次.可以发现,扩展一次后得到的△DEF的面积是原来△ABC面积的
7
7
倍.
应用:
去年在面积为10m2的△ABC空地上栽种了某种花卉.今年准备扩大种植规模,把△ABC向外进行两次扩展,第一次由△ABC扩展成△DEF,第二次由△DEF扩展成△MGH(如图4).则这两次扩展的区域(即阴影部分)面积共为
480
480
m2

查看答案和解析>>

科目:初中数学 来源: 题型:022

(2006·河北)如图所示是由边长为1m的正方形地砖铺设的地面示意图,小明沿图中所示的折线从A→B→C所走的路程为________m.(结果保留根号)

查看答案和解析>>

科目:初中数学 来源:2006年全国中考数学试题汇编《二次函数》(09)(解析版) 题型:解答题

(2006•河北)图1至图7的正方形霓虹灯广告牌ABCD都是20×20的等距网格(每个小方格的边长均为1个单位长),其对称中心为点O.
如图1,有一个边长为6个单位长的正方形EFGH的对称中心也是点O,它每秒1个单位长的速度由起始位置向外扩大(即点O不动,正方形EFGH经过一秒由6×6扩大为8×8;再经过一秒,由8×8扩大为10×10;…),直到充满正方形ABCD,再以同样的速度逐步缩小到起始时的大小,然后一直不断地以同样速度再扩大、再缩小.
另有一个边长为6个单位长的正方形MNPQ从如图1所示的位置开始,以每秒1个单位长的速度,沿正方形ABCD的内侧边缘按A?B?C?D?A移动(即正方形MNPQ从点P与点A重合位置开始,先向左平移,当点Q与点B重合时,再向上平移,当点M与点C重合时,再向右平移,当点N与点D重合时,再向下平移,到达起始位置后仍继续按上述方式移动).
正方形EFGH和正方形MNPQ从如图1的位置同时开始运动,设运动时间为x秒,它们的重叠部分面积为y个平方单位.
(1)请你在图2和图3中分别画出x为2秒、18秒时,正方形EFGH和正方形MNPQ的位置及重叠部分(重叠部分用阴影表示),并分别写出重叠部分的面积;
(2)①如图4,当1≤x≤3.5时,求y与x的函数关系式;
②如图5,当3.5≤x≤7时,求y与x的函数关系式;
③如图6,当7≤x≤10.5时,求y与x的函数关系式;
④如图7,当10.5≤x≤13时,求y与x的函数关系式.
(3)对于正方形MNPQ在正方形ABCD各边上移动一周的过程,请你根据重叠部分面积y的变化情况,指出y取得最大值和最小值时,相对应的x的取值情况,并指出最大值和最小值分别是多少.(说明:问题(3)是额外加分题,加分幅度为1~4分)

查看答案和解析>>

科目:初中数学 来源:2006年河北省中考数学试卷(课标卷)(解析版) 题型:解答题

(2006•河北)图1至图7的正方形霓虹灯广告牌ABCD都是20×20的等距网格(每个小方格的边长均为1个单位长),其对称中心为点O.
如图1,有一个边长为6个单位长的正方形EFGH的对称中心也是点O,它每秒1个单位长的速度由起始位置向外扩大(即点O不动,正方形EFGH经过一秒由6×6扩大为8×8;再经过一秒,由8×8扩大为10×10;…),直到充满正方形ABCD,再以同样的速度逐步缩小到起始时的大小,然后一直不断地以同样速度再扩大、再缩小.
另有一个边长为6个单位长的正方形MNPQ从如图1所示的位置开始,以每秒1个单位长的速度,沿正方形ABCD的内侧边缘按A?B?C?D?A移动(即正方形MNPQ从点P与点A重合位置开始,先向左平移,当点Q与点B重合时,再向上平移,当点M与点C重合时,再向右平移,当点N与点D重合时,再向下平移,到达起始位置后仍继续按上述方式移动).
正方形EFGH和正方形MNPQ从如图1的位置同时开始运动,设运动时间为x秒,它们的重叠部分面积为y个平方单位.
(1)请你在图2和图3中分别画出x为2秒、18秒时,正方形EFGH和正方形MNPQ的位置及重叠部分(重叠部分用阴影表示),并分别写出重叠部分的面积;
(2)①如图4,当1≤x≤3.5时,求y与x的函数关系式;
②如图5,当3.5≤x≤7时,求y与x的函数关系式;
③如图6,当7≤x≤10.5时,求y与x的函数关系式;
④如图7,当10.5≤x≤13时,求y与x的函数关系式.
(3)对于正方形MNPQ在正方形ABCD各边上移动一周的过程,请你根据重叠部分面积y的变化情况,指出y取得最大值和最小值时,相对应的x的取值情况,并指出最大值和最小值分别是多少.(说明:问题(3)是额外加分题,加分幅度为1~4分)

查看答案和解析>>

同步练习册答案