精英家教网 > 初中数学 > 题目详情
如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D.
(1)求证:CD为⊙O的切线;
(2)若DC=4,AC=5,求⊙O的直径的AE.
(1)证明:连接OC.
∵OC=OA,
∴∠OAC=∠OCA.
∵AC平分∠PAE,
∴∠DAC=∠OAC,
∴∠DAC=∠OCA,
∴ADOC.
∵CD⊥PA,
∴∠ADC=∠OCD=90°,
即CD⊥OC,点C在⊙O上,
∴CD是⊙O的切线.

(2)过O作OM⊥AB于M.即∠OMA=90°,
∵∠MDC=∠OMA=∠DCO=90°,
∴四边形DMOC是矩形,
∴OC=DM,OM=CD=4.
∵DC=4,AC=5,
∴AD=3,
设圆的半径为x,则AM=x-AD=x-3,
∵在Rt△AMO中,∠AMO=90°,根据勾股定理得:AO2=AM2+OM2
∴x2=(x-3)2+42
∴x=
25
6

∴⊙O的半径是
25
6

∴⊙O的直径的AE=2×
25
6
=
25
3
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知△ABC中,AC=BC,∠CAB=α(定值),圆O的圆心O在AB上,并分别与AC、BC相切于点P、Q.
(1)求∠POQ的大小(用α表示);
(2)设D是CA延长线上的一个动点,DE与圆O相切于点M,点E在CB的延长线上,试判断∠DOE的大小是否保持不变,并说明理由;
(3)在(2)的条件下,如果AB=m(m为已知数),cosα=
3
5
,设AD=x,DE=y,求y关于x的函数解析式(要指出函数的定义域)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知AB是⊙O直径,AC是⊙O弦,点D是
ABC
的中点,弦DE⊥AB,垂足为F,DE交AC于点G.
(1)若过点E作⊙O的切线ME,交AC的延长线于点M(请补完整图形),试问:ME=MG是否成立?若成立,请证明;若不成立,请说明理由;
(2)在满足第(2)问的条件下,已知AF=3,FB=
4
3
,求AG与GM的比.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,PA为⊙O的切线,A为切点,PBC是⊙O的割线,PB=3,BC=12,则PA=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知如图,AB为半圆的直径,C、D为半圆弧上的两点,若弧CD=弧BD,DC与BA的延长线交于P,如果,AP:CP=3:4,△ADB的面积为16
5
,则AP的长为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在Rt△ABC中,∠C=90°,以BC边为直径的⊙O交AB于点D,连接OD并延长交CA的延长线于点E,过点D作DF⊥OE交EC于点F.
(1)求证:AF=CF.
(2)若ED=2,sin∠E=
3
5
,求AD的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知AB是⊙O的直径,AD⊥DC,AC平分∠DAB.
(1﹚求证:直线CD与⊙O相切于点C;
(2﹚如果AD和AC的长是一元二次方程x2-(2+
3
)x+2
3
=0
的两根,求AD、AC、AB的长和∠DAB的度数.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在△ABC中,分别以AB、BC为直径的⊙O1、⊙O2,交于另一点D.
(1)证明:交点D必在AC上;
(2)如图甲,当⊙O1与⊙O2半径之比为4:3,且DO2与⊙O1相切时,判断△ABC的形状,并求tan∠O2DB的值;
(3)如图乙,当⊙O1经过点O2,AB、DO2的延长线交于E,且BE=BD时,求∠A的度数.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知△ABC内接于⊙O,AC是⊙O的直径,D是
AB
的中点,过点D作直线BC的垂线,分别交CB、CA的延长线E、F.
(1)求证:EF是⊙O的切线;
(2)若EF=8,EC=6,求⊙O的半径.

查看答案和解析>>

同步练习册答案