【题目】如图1,已知抛物线与轴交于、两点,与轴交于点.
(1)求抛物线的解析式.
(2)如图2,直线:与轴交于点,点是轴上一个动点,过点作轴,与抛物线交于点,与直线交于点,当点、、、四个点组成的四边形是平行四边形时,求此时点坐标.
(3)如图3,连接和,点是抛物线上一个动点,连接,当时,求点的坐标.
科目:初中数学 来源: 题型:
【题目】在甲、乙两个不透明的盒子中,分别装有除颜色外其它完全相同的小球,其中,甲盒子装有2个白球,1个红球;乙盒子装有2个红球,1个白球.
(1)将甲盒子摇匀后,随机取出一个小球,求小球是白色的概率;
(2)小华和同桌商定:将两个盒子摇匀后,各随机摸出一个小球.若颜色相同,则小华获胜;若颜色不同,则同桌获胜,请用列表法或画出树状图的方法说明谁赢的可能性大.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】袋中装有2个红球和2个绿球.
(1)先从袋中摸出1个球后放回,混合均匀后再摸出1个球,求两次摸到的球中有1个绿球和1个红球的概率;
(2)先从袋中摸出1个球后不放回,再摸出个球,则两次摸到的球中有1个绿球和1个红球的概率是 .(直接填答案)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,AC=BC,将△ABC绕点A逆时针旋转60°,得到△ADE,连接BE,则∠BED的度数为( )
A.100°B.120°C.135°D.150°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=ax2+bx+c的图象如图所示,对称轴为直线x=1.以下结论:①2a>-b;②4a+2b+c>0;③m(am+b)>a+b(m是大于1的实数);④3a+c<0其中正确结论的个数为( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直线上有相距的两点和(点在点的右侧),以为圆心作半径为的圆,过点作直线.将以的速度向右移动(点始终在直线上),则与直线在______秒时相切.
A.3B.3.5C.3或4D.3或3.5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,为美化中心城区环境,政府计划在长为30米,宽为20米的矩形场地上修建公园.其中要留出宽度相等的三条小路,且两条与平行,另一条与平行,其余部分建成花圃.
(1)若花圃总面积为448平方米,求小路宽为多少米?
(2)已知某园林公司修建小路的造价(元)和修建花圃的造价(元)与修建面积(平方米)之间的函数关系分别为和.若要求小路宽度不少于2米且不超过4米,求小路宽为多少米时修建小路和花圃的总造价最低?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,线段AB、CD分别表示甲乙两建筑物的高,BA⊥AD,CD⊥DA,垂足分别为A、D.从D点测到B点的仰角α为60°,从C点测得B点的仰角β为30°,甲建筑物的高AB=30米
(1)求甲、乙两建筑物之间的距离AD.
(2)求乙建筑物的高CD.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】综合与探究
如图,抛物线经过点A(-2,0),B(4,0)两点,与轴交于点C,点D是抛物线上一个动点,设点D的横坐标为.连接AC,BC,DB,DC,
(1)求抛物线的函数表达式;
(2)△BCD的面积等于△AOC的面积的时,求的值;
(3)在(2)的条件下,若点M是轴上的一个动点,点N是抛物线上一动点,试判断是否存在这样的点M,使得以点B,D,M,N为顶点的四边形是平行四边形,若存在,请直接写出点M的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com