【题目】如图,已知A、B两地在数轴上相距20米,A地在数轴上表示的点为-8,小乌龟从A地出发沿数轴往B地方向前进,第一次前进1米,第二次后退2米,第三次再前进3米,第四次又后退4米,……,按此规律行进,(数轴的一个单位长度等于1米)
(1)求B地在数轴上表示的数;
(2)若B地在原点的左侧,经过第五次行进后小乌龟到达点P,第六次行进后到达点Q,则点P和点Q到点A的距离相等吗?请说明理由;
(3)若B地在原点的右侧,那么经过30次行进后,小乌龟到达的点与点B之间的距离是多少米?
【答案】(1)12或-28;(2)相等;(3)70米.
【解析】
(1)到A地距离为20的点有两个,分别位于A点左侧、右侧.依据数轴两点距离即可求得点B坐标
(2)数轴上点的移动规律是“左减右加”.依据规律计算分别求出点P、Q相对A点移动的距离即可得到答案
(3)根据100为偶数可得在数轴上表示的数,再根据两点间的距离公式即可求解.
解:(1),.
答:地在数轴上表示的数是12或.
(2)令小乌龟从A地出发,前进为“+”,后退为“-”,则:
第五次行进后相对A的位置为:,
第六次行进后相对A的位置为:,
因为点、与点的距离都是3米,
所以点、点到地的距离相等;
(3)若地在原点的右侧,前进为“+”,后退为“-”,
则当为100时,它在数轴上表示的数为:
,
∵B点表示的为12.
∴AB的距离为(米.
答:小乌龟到达的点与点之间的距离是70米.
科目:初中数学 来源: 题型:
【题目】如图,边长为正方形OABC的边OA、OC在坐标轴上.在轴上线段(Q在A的右边),P从A出发,以每秒1个单位的速度向O运动,当点P到达点O时停止运动,运动时间为.连接PB,过P作PB的垂线,过Q作轴的垂线,两垂线相交于点D.连接BD交轴于点E,连接PD交轴于点F,连接PE.
(1)求∠PBD的度数.
(2)设△POE的周长为,探索与的函数关系式,并写出的取值范围.
(3)令,当△PBE为等腰三角形时,求△EFD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC是等边三角形.
(1)如图(1),点E在线段AB上,点D在射线CB上,且ED=EC.将△BCE绕点C顺时针旋转60°至△ACF,连接EF.猜想线段AB,DB,AF之间的数量关系;
(2)点E在线段BA的延长线上,其它条件与(1)中一致,请在图(2)的基础上将图形补充完整,并猜想线段AB,DB,AF之间的数量关系;
(3)请选择(1)或(2)中的一个猜想进行证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知数轴上O、A两点对应的数为0、10,Q为数轴上一点.
(1)Q为OA线段的中点(即点Q到点O和点A的距离相等),点Q对应的数为 .
(2)数轴上有点 Q,使 Q到O、A的距离之和为20,点Q对应的数为 .
(3)若点Q点表示8,点M以每秒钟5个单位的速度从O点向右运动,点N以每秒钟1个单位的速度从A点向右运动,t秒后有 QM= QN,求时间t的值t= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx﹣4的图象经过A(﹣1,0)、B(4,0)两点,于y轴交于点D.
(1)求这个二次函数的表达式;
(2)已知点C(3,m)在这个二次函数的图象上,连接BC,点P为抛物线上一点,且∠CBP=60°.
①求∠OBD的度数;
②求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某专业户要出售300只羊,现在市场上羊的价格为每千克11元,为了估计这300只羊能卖多少钱,试问:
(1)对于上述问题你认为适用___________.(填“普查”或“抽样调查”)
(2)该专业户从口随机抽取了5只羊,称得它们的质量(单位:千克)如下:26,31,32 ,36,37
①在这个问题中,总体、个体和样本各是___________,___________,___________.
②通过上述数据,你能估算出这300只羊能卖多少钱吗?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,AC为对角线,E为AB上一点,过点E作EF∥AD,与AC、DC分别交于点G,F,H为CG的中点,连接DE,EH,DH,FH.下列结论:
①EG=DF;②∠AEH+∠ADH=180 ;③△EHF≌△DHC;④若,则3S△EDH=13S△DHC,其中结论正确的有___________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】用纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元.在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元.
设在同一家复印店一次复印文件的页数为(为非负整数).
(1)根据题意,填写下表:
一次复印页数(页) | 5 | 10 | 20 | 30 | … |
甲复印店收费(元) | 2 | … | |||
乙复印店收费(元) | … |
(2)设在甲复印店复印收费元,在乙复印店复印收费元,分别写出关于的函数关系式;
(3)当时,顾客在哪家复印店复印花费少?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知点P是矩形ABCD边AB上的任意一点(与点A、B不重合)
(1)如图①,现将△PBC沿PC翻折得到△PEC;再在AD上取一点F,将△PAF沿PF翻折得到△PGF,并使得射线PE、PG重合,试问FG与CE的位置关系如何,请说明理由;
(2)在(1)中,如图②,连接FC,取FC的中点H,连接GH、EH,请你探索线段GH和线段EH的大小关系,并说明你的理由;
(3)如图③,分别在AD、BC上取点F、C’,使得∠APF=∠BPC’,与(1)中的操作相类似,即将△PAF沿PF翻折得到△PFG,并将△沿翻折得到△,连接,取的中点H,连接GH、EH,试问(2)中的结论还成立吗?请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com