A. | 2个 | B. | 3个 | C. | 4个 | D. | 5个 |
分析 由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断即可.
解答 解:①由图知:抛物线与x轴有两个不同的交点,则△=b2-4ac>0,
即b2>4ac,故①正确;
②抛物线开口向上,得:a>0;
抛物线的对称轴为x=-$\frac{b}{2a}$=1,b=-2a,故b<0;
抛物线交y轴于负半轴,得:c<0;
所以abc>0;故②正确;
③抛物线的对称轴为x=-$\frac{b}{2a}$=1,即b=-2a,
故2a+b=0,故③错误;
④根据抛物线的对称轴方程可知:(-1,0)关于对称轴的对称点是(3,0);
当x=-1时,y<0,所以当x=3时,也有y<0,即9a+3b+c<0;
故④正确;
所以这结论正确的有①②④.
故选B.
点评 本题考查的是二次函数图象与系数的关系,掌握二次函数y=ax2+bx+c系数符号与抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数的关系是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com