【题目】★如图,在平面直角坐标系xOy中,直线y=x-2与x轴、y轴分别交于A,B两点,P是直线AB上一动点,⊙P的半径为1.
(1)判断原点O与⊙P的位置关系,并说明理由;
(2)当⊙P过点B时,求⊙P被y轴所截得的劣弧的长;
(3)当⊙P与x轴相切时,求出切点的坐标.
【答案】(1)见解析 (2) (3) 或
【解析】试题分析:(1)由直线y=与x轴、y轴分别交于A,B两点,可求得点A与点B的坐标,继而求得∠OBA=30°,然后过点O作OH⊥AB于点H,利用三角函数可求得OH的长,根据直线与圆的位置关系即可得出答案;
(2)当⊙P过点B时,点P在y轴右侧时,易得⊙P被y轴所截的劣弧所对的圆心角为:180°-30°-30°=120°,则可求得弧长;同理可求得当⊙P过点B时,点P在y轴左侧时,⊙P被y轴所截得的劣弧的长;
(3)首先求得当⊙P与x轴相切时,且位于x轴下方时,点D的坐标,然后利用对称性可以求得当⊙P与x轴相切时,且位于x轴上方时,点D的坐标.
试题解析:解:(1)原点O在⊙P外.理由如下:
∵直线y=x-2与x轴、y轴分别交于A,B两点,
∴点A的坐标为(2,0),点B的坐标为(0,-2).
在Rt△OAB中,tan∠OBA===,
∴∠OBA=30°.
如图①,过点O作OH⊥AB于点H,
在Rt△OBH中,OH=OB·sin∠OBA=.
∵>1,
∴原点O在⊙P外;
(2)如图②,当⊙P过点B时,点P在y轴右侧时,
∵PB=PC,
∴∠PCB=∠OBA=30°,
∴⊙P被y轴所截的劣弧所对的圆心角的度数为180°-30°-30°=120°,
∴弧长为=;
同理:当⊙P过点B时,点P在y轴左侧时,弧长同样为.
∴当⊙P过点B时,⊙P被y轴所截得的劣弧的长为;
(3)如图③,当⊙P与x轴相切时,且位于x轴下方时,设切点为D,作PD⊥x轴,
∴PD∥y轴,
∴∠APD=∠ABO=30°.
在Rt△DAP中,AD=DP·tan∠DPA=1×tan30°=,
∴OD=OA-AD=2-,
∴此时点D的坐标为;
当⊙P与x轴相切时,且位于x轴上方时,根据对称性可以求得此时切点的坐标为.
综上所述,当⊙P与x轴相切时,切点的坐标为或.
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线经过点A(-1,0)、B(3,0)、C(0,3)三点。
(1)求抛物线的解析式。
(2)求△ABC的面积。若P是抛物线上一点(异于点C),且满足△ABP的面积等于△ABC的面积,求满足条件的点P的坐标。
(3)点M是线段BC上的点(不与B,C重合),过M作MN∥轴交抛物线于N,若点M的横坐标为,请用含的代数式表示线段MN的长。
(4)在(3)的条件下,连接NB、NC,则是否存在点M,使△BNC的面积最大?若存在,求的值,并求出△BNC面积的最大值。若不存在,说明理由。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com