精英家教网 > 初中数学 > 题目详情
如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为(  )
A.6B.12C.32D.64

∵△A1B1A2是等边三角形,
∴A1B1=A2B1,∠3=∠4=∠12=60°,
∴∠2=120°,
∵∠MON=30°,
∴∠1=180°-120°-30°=30°,
又∵∠3=60°,
∴∠5=180°-60°-30°=90°,
∵∠MON=∠1=30°,
∴OA1=A1B1=1,
∴A2B1=1,
∵△A2B2A3、△A3B3A4是等边三角形,
∴∠11=∠10=60°,∠13=60°,
∵∠4=∠12=60°,
∴A1B1A2B2A3B3,B1A2B2A3
∴∠1=∠6=∠7=30°,∠5=∠8=90°,
∴A2B2=2B1A2,B3A3=2B2A3
∴A3B3=4B1A2=4,
A4B4=8B1A2=8,
A5B5=16B1A2=16,
以此类推:A6B6=32B1A2=32.
故选:C.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在三角形ABC中,AB=AC,D是BC上一点,∠BAD=40°,E是AC上一点,AD=AE,求∠EDC的度数.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,△OAB是边长为2+
3
的等边三角形,其中O是坐标原点,顶点A在x轴的正方向上,将△OAB折叠,使点B落在边OA上,记为B′,折痕为EF.
(1)设OB′的长为x,△OB′E的周长为c,求c关于x的函数关系式;
(2)当B′Ey轴时,求点B′和点E的坐标;
(3)当B′在OA上运动但不与O、A重合时,能否使△EB′F成为直角三角形?若能,请求出点B′的坐标;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,等边△ABC中,D是BC上一点,以AD为边作等腰△ADE,使AD=AE,∠DAE=80°,DE交AC于点F,∠BAD=15°,求∠FDC的度数.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图是边长为4的正三角形ABC,建立适当的直角坐标系,写出各个顶点的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α,将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.
(1)△COD是什么三角形?说明理由;
(2)若AO=n2+1,AD=n2-1,OD=2n(n为大于1的整数),求α的度数;
(3)当α为多少度时,△AOD是等腰三角形?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图所示,在边长为2的正三角形ABC中,已知点P是三角形内任意一点,则点P到三角形的三边距离之和PD+PE+PF等于(  )
A.
3
B.2
3
C.4
3
D.无法确定

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,图1是一块边长为1,面积记为S1的正三角形纸板,沿图1的底边剪去一块边长为
1
2
的正三角形纸板后得到图2,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块被剪掉正三角形纸板边长的
1
2
)后,得图3,图4,…,记第n(n≥3)块纸板的面积为Sn,则Sn=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,点A是BC上一点,△ABD、△ACE都是等边三角形.
试说明:
(1)AM=AN;
(2)MNBC;
(3)∠DOM=60°.

查看答案和解析>>

同步练习册答案