分析 分两种情况:如图1,F是线段CD上一动点,如图2,F是DC延长线上一点,利用勾股定理求出CE,再证明CF=CE即可解决问题.
解答 解:如图1,F是线段CD上一动点,由翻折可知,∠FEA=∠FEA′,
∵CD∥AB,
∴∠CFE=∠AEF,
∴∠CFE=∠CEF,
∴CE=CF,
在Rt△BCE中,EC=$\sqrt{B{C}^{2}+E{B}^{2}}$=$\sqrt{(2\sqrt{3})^{2}+{4}^{2}}$=2$\sqrt{7}$,
∴CF=CE=2$\sqrt{7}$,
∵AB=CD=6,
∴DF=CD-CF=6-2$\sqrt{7}$,
如图2,F是DC延长线上一点,由翻折可知,∠FEA=∠FEA′,
∵CD∥AB,
∴∠CFE=∠AEF,
∴∠CFE=∠CEF,
∴CE=CF,
在Rt△BCE中,EC=$\sqrt{B{C}^{2}+E{B}^{2}}$=$\sqrt{(2\sqrt{3})^{2}+{4}^{2}}$=2$\sqrt{7}$,
∴CF=CE=2$\sqrt{7}$,
∵AB=CD=6,
∴DF=CD+CF=6+2$\sqrt{7}$,
故答案为6+2$\sqrt{7}$或6-2$\sqrt{7}$.
点评 本题考查翻折变换、矩形的性质、勾股定理等知识,本题的突破点是证明△CFE的等腰三角形,属于中考常考题型.
科目:初中数学 来源: 题型:选择题
A. | 120° | B. | 130° | C. | 60° | D. | 150° |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com