精英家教网 > 初中数学 > 题目详情
如图,⊙P与⊙O相交于A、B两点,⊙P经过圆心O,点C是⊙P的优弧上任意一点(不与点A、B重合),连接AB、AC、BC、OC.
(1)指出图中与∠ACO相等的一个角;
(2)当点C在⊙P上什么位置时,直线CA与⊙O相切?请说明理由;
(3)当∠ACB=60°时,两圆半径有怎样的大小关系?请说明你的理由.

【答案】分析:要使直线CA与⊙O相切,只要证得∠OAC=90°即可;根据第二问第三问就不难求得了.
解答:解:(1)连接OA,OB.
在⊙O中,∵OA=OB,
=
∴∠ACO=∠BCO;

(2)连接OP,并延长与⊙P交于点D.
若点C在点D位置时,直线CA与⊙O相切
理由:连接AD,OA,则∠DAO=90°
∴OA⊥DA
∴DA与⊙O相切
即点C在点D位置时,直线CA与⊙O相切.

(3)当∠ACB=60°时,两圆半径相等;
理由:作直径OD,连接BD,AD,OA,
∵∠ADB=∠ACB=60°,PO垂直平分AB,
=
∵∠ADO=∠BDO,
∴∠ADO=30°,
∵OD是直径,
∴∠DAO=90°,
∴OA=OD,
∴OA=PO,
∴当∠ACB=60°时,两圆半径相等.
点评:本题考查了等弧所对的圆周角相等、直径所对的圆周角等于90°,切线的判定等知识.具有一定的综合性和难度.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:如图,⊙O与⊙P相交于A、B两点,点P在⊙O上,⊙O的弦AC切⊙P于点A,CP及其精英家教网延长线交⊙P于D、E,过点E作EF⊥CE交CB的延长线于F.
(1)求证:BC是⊙P的切线;
(2)若CD=2,CB=2
2
,求EF的长;
(3)若设PE:CE=k,是否存在实数k,使△PBD恰好是等边三角形?若存在,求出k的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,⊙O与⊙P相交于B、C两点,BC是⊙P的直径,且把⊙O分成度数的比为1:2的两条弧,A是
BmC
上的动点(不与B、C重合),连接AB、AC分别交⊙P于D、E两点.
(1)当△ABC是锐角三角形(图①)时,判断△PDE的形状,并证明你的结论;
(2)当△ABC是直角三角形、钝角三角形时,请你分别在图②、图③中画出相应的图形(不要求尺规作图),并按图①标记字母;
(3)在你所画的图形中,(1)的结论是否成立?请就钝角的情况加以证明.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

22、如图,⊙Ο1与⊙Ο2相交于A、B两点,AD为⊙Ο2的直径,AD与⊙Ο1交于C点(异于A、B两点),连接DB,过C点作CE∥BD交⊙Ο1于E.
(1)求证:BE是⊙Ο2的切线;

(2)若AD为⊙Ο2中非直径的弦,其它条件不变,试问(1)中的结论是否仍然成立?证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,⊙O与⊙O′相交,AB为公共弦,圆心距⊙OO′=5cm,⊙O与⊙O′的半径分别为4cm和3cm,则AB的长为
4.8
4.8
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,⊙O与⊙M相交于A,B,半径是2,⊙O过点M,则S四边形OAMB=
2
3
2
3

查看答案和解析>>

同步练习册答案