精英家教网 > 初中数学 > 题目详情
已知抛物线y=-x2+mx+n经过点A(1,0),B(6,0).
(1)求抛物线的解析式;
(2)抛物线与y轴交于点D,求△ABD的面积;
(3)当y<0,直接写出自变量x的取值范围.
(1)将A(1,0),B(6,0)代入抛物线得:
-1+m+n=0
-36+6m+n=0

解得:
m=7
n=-6

则抛物线解析式为y=-x2+7x-6;

(2)令x=0,得到y=-6,即D(0,-6),
∵AB=6-1=5,D纵坐标为-6,
∴S△ABD=
1
2
×5×6=15;

(3)根据图形得:y<0时,x的范围为x<1或x>6.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

对于任意两个二次函数:y1=a1x2+b1x+c1,y2=a2x2+b2x+c2,(a1a2≠0),当|a1|=|a2|时,我们称这两个二次函数的图象为全等抛物线.
现有△ABM,A(-1,0),B(1,0).记过三点的二次函数抛物线为“C□□□”(“□□□”中填写相应三个点的字母)
(1)若已知M(0,1),△ABM≌△ABN(0,-1).请通过计算判断CABM与CABN是否为全等抛物线;
(2)在图2中,以A、B、M三点为顶点,画出平行四边形.
①若已知M(0,n),求抛物线CABM的解析式,并直接写出所有过平行四边形中三个顶点且能与CABM全等的抛物线解析式.
②若已知M(m,n),当m,n满足什么条件时,存在抛物线CABM根据以上的探究结果,判断是否存在过平行四边形中三个顶点且能与CABM全等的抛物线?若存在,请列出所有满足条件的抛物线“C□□□”;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

下表给出了x与函数y=x2+bx+c的一些对应值:
x0136
y50-45
(1)请根据表格求出y=x2+bx+c的解析式;
(2)写出抛物线y=x2+bx+c的对称轴与顶点坐标;
(3)求出y=x2+bx+c与x轴的交点坐标;
(4)画出y=x2+bx+c的大致图象,并结合图象指出,当y<0,x的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,抛物线y=ax2-5ax+4经过△ABC的三个顶点,已知BCx轴,点A在x轴上,点C在y轴上,且AC=BC,过A、B、C三点的抛物线的解析式为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在矩形ABCD中,BD=20,AD>AB,设∠ABD=α,已知sinα是方程25x2-35x+12=0的一个实根,点E,F分别是BC,DC上的点,EC+CF=8,设BE=x,△AEF的面积等于y.
(1)求出y与x之间的函数关系式;
(2)当E,F两点在什么位置时,y有最小值并求出这个最小值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知,二次函数y=mx2+3(m-
1
4
)x+4(m<0)与x轴交于A、B两点,(A在B的左边),与y轴交于点C,且∠ACB=90度.
(1)求这个二次函数的解析式;
(2)矩形DEFG的一条边DG在AB上,E、F分别在BC、AC上,设OD=x,矩形DEFG的面积为S,求S关于x的函数解析式;
(3)将(1)中所得抛物线向左平移2个单位后,与x轴交于A′、B′两点(A′在B′的左边),矩形D′E′F′G′的一条边D′G′在A′B′上(G′在D′的左边),E′、F′分别在抛物线上,矩形D′E′F′G′的周长是否存在最大值?若存在,请求出最大值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

某飞机着陆滑行的路程s(米)与时间t(秒)的关系式为:s=60t-1.5t2,那么飞机着陆后滑行______米才能停止.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=
3
3
x2-
4
3
3
x+
3
与y轴交于点A,与x轴交于B、C两点(C在B的左边).
(1)过A、O、B三点作⊙M,求⊙M的半径;
(2)点P为弧OAB上的动点,当点P运动到何位置时△OPB的面积最大?求出此时点P的坐标及△OPB的最大面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知某种水果的批发单价与批发量的函数关系如图1所示.
(1)请说明图中①、②两段函数图象的实际意义;
(2)写出批发该种水果的资金金额w(元)与批发量m(kg)之间的函数关系式;在图2的坐标系中画出该函数图象;指出金额在什么范围内,以同样的资金可以批发到较多数量的该种水果;
(3)经调查,某经销商销售该种水果的日最高销量与零售价之间的函数关系如图3所示,该经销商拟每日售出60kg以上该种水果,且当日零售价不变,请你帮助该经销商设计进货和销售的方案,使得当日获得的利润最大.

查看答案和解析>>

同步练习册答案