精英家教网 > 初中数学 > 题目详情

【题目】高高的路灯挂在路边的上方,高傲而明亮,小明拿着一根2米长的竹竿,想量一量路灯的高度,直接量是不可能的.于是,他走到路灯旁的一个地方,竖起竹竿(即AE),这时,他量了一下竹竿的影长(AC)正好是1米,他沿着影子的方向走,向远处走出两根竹竿的长度(即AB=4米),他又竖起竹竿,这时竹竿的影长正好是一根竹竿的长度(即BD=2米).此时,小明抬头瞧瞧路灯,若有所思地说:噢,我知道路灯有多高了!同学们,请你和小明一起解答这个问题:

(1)在图中作出路灯O的位置,并作OP⊥lP.

(2)求出路灯O的高度,并说明理由.

【答案】(1)见解析;(2)路灯有10米高.

【解析】试题分析:

试题解析:(1)

(2)由于BF=DB=2(),

所以,DP=OP=灯高,

COPAECPOPCP

AEOP

∴△CEA∽△COP,

AP=xOP=h则:

DP=OP表达为2+4+x=h

联立①②两式得:

x=4h=10

∴路灯有10米高.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】(1)如图1,点O是线段AD的中点,分别以AODO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连接ACBD,相交于点E,连接BC.求∠AEB的大小;

(2)如图2,OAB固定不动,保持OCD的形状和大小不变,将OCD绕点O旋转(OABOCD不能重叠),求∠AEB的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=kx+b与反比例函数y=的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.

(1)求一次函数y=kx+b和y=的表达式;

(2)已知点C在x轴上,且△ABC的面积是8,求此时点C的坐标;

(3)反比例函数y=(1≤x≤4)的图象记为曲线C1,将C1向右平移3个单位长度,得曲线C2,则C1平移至C2处所扫过的面积是_________.(直接写出答案)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】最美女教师张丽莉,为抢救两名学生,以致双腿高位截肢,社会各界纷纷为她捐款,我市某中学九年级一班全体同学参加了捐款活动,该班同学捐款情况的部分统计图如图所示:

1)求该班的总人数;

2)将条形图补充完整,并写出捐款总额的众数;

3)该班平均每人捐款多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】铜仁某校高中一年级组建篮球队,对甲、乙两名备选同学进行定位投篮测试,每次投10个球,共投10次.甲、乙两名同学测试情况如图所示:

根据图6提供的信息填写下表:

平均数

众数

方差

如果你是高一学生会文体委员,会选择哪名同学进入篮球队?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】八年级班同学小明和小亮,升入九年级时学校采用随机的方式编班,已知九年级共分六个班,小明和小亮被分在同一个班的概率是( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC内一点D,点CAE上一点,ADBE于点P,射线DCBE的延长线于点F,且∠ABD=∠ACD,∠PDB=∠PDC

(1)求证:ABAC

(2)AB3AE5,求的值;

(3)m,则_______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等边ABC中,AD是BAC的角平分线,E为AD上一点,以BE为一边且在BE下方作等边BEF,连接CF.

(1)求证:AE=CF;

(2)求ACF的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点是等边三角形内一点,绕点 .按顺时针方向旋转, 连接.

1)求证:是等边三角形;

2)当时, 试判断的形状,并说明理由;

3)探究:为多少度时,是等腰三角形.

查看答案和解析>>

同步练习册答案