精英家教网 > 初中数学 > 题目详情
15.半圆有1条对称轴,等边三角形有3条对称轴.

分析 根据轴对称图形的定义:如果一个图形沿一条直线对折后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴;由此分别找出这几个图形的所有对称轴,即可解决问题.

解答 解:半圆有1条对称轴,等边三角形有3条对称轴.
故答案为:1;3.

点评 本题主要考查了轴对称的性质,解决问题的关键是根据轴对称图形的定义得出图形的对称轴的条数.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

5.有理数a,b在数轴上的对应点如图所示,则下面式子中正确的是(  )
A.b<a<0B.|b|<|a|C.ab>0D.a-b>a+b

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,在△ABC中,∠ACB的平分线CD交AB于D,BE∥CD交AC的延长线于E,若BD:AD=2:5,求AC:BC的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,在Rt△ABC中,∠A=90°,AB=3,AC=4;
(1)用尺规作出边BC的中垂线交BC于点D,交AC于点E(不写作法,保留作图痕迹,并在图中表明字母)
(2)连接BE,求线段BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.等腰三角形的判定定理:已知△ABC中,∠B=∠C,求证:AB=AC
课堂情景还原:
小明说:“作高线AD,可证明△ABD≌△ACD,从而得到AB=AC”
小红说:“作角平分线AD,可证明△ABD≌△ACD,从而得到AB=AC”
小刚说:“作中线AD,证明△ABD≌△ACD”
很多同学说不能证明△ABD≌△ACD,因为“SSA”不能作为判定两个三角形全等的依据.
小聪是这样分析的:“中线AD把△ABC面积平分,即△ABD与△ACD面积相等,要证明AB=AC,只需证明这两边上的高相等…”
(1)小明与小红证明全等的判定方法是:AAS或有两角和其中一角所对的边对应相等的两个三角形全等(简写理由)
(2)根据小聪的提示,请你完成等腰三角形的判定定理证明.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.解方程
(1)2x2+4x+1=0 (配方法)                  
(2)x2+6x=5(公式法)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.读一读:式子“1+2+3+4+5+…+100”表示从1开始的100个连续自然数的和,由于上述式子比较长,书写也不方便,为了简便起见,我们可将“1+2+3+4+5+…+100”表示为$\sum_{n=1}^{100}$n,这里“$\sum$”是求和符号,例如“1+3+5+7+9+…+99”(即从1开始的100以内的连续奇数的和)可表示为$\sum_{n=1}^{50}{(2n-1);}$又如“13+23+33+43+53+63+73+83+93+103”可表示为$\sum_{n=1}^{10}{n^3}$,同学们,通过以上材料的阅读,请解答下列问题:
(1)2+4+6+8+10+…+100(即从2开始的100以内的连续偶数的和)
用求和符号可表示为$\sum_{n=1}^{50}2n$;
(2)求$\sum_{n=1}^{10}$n的值
(3)求$\sum_{n=1}^{20}{\frac{1}{n(n+1)}}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.计算:
(1)${(\frac{1}{4})^{-1}}-\sqrt{27}+{(5-π)^0}+6tan{60°}$
(2)化简:$(1+\frac{3}{a-2})÷\frac{a+1}{{{a^2}-4}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,已知梯形ABCD中,AD∥BC,DC⊥BC,AB=10,tanB=$\frac{4}{3}$,⊙O1以AB为直径,⊙O2以CD为直径,且⊙O1与⊙O2相切,求AD的长.

查看答案和解析>>

同步练习册答案