精英家教网 > 初中数学 > 题目详情
如图,等边△ABC中,D、E分别在AB、BC边上,且AD=2BE=4,连接DE,并将线段DE绕点E顺时针旋转60°,得到线段EF,连接CF,取EF中点G,连接AG,延长CF交AG于点H.若AH=
5
2
HG,则BD长为
 
考点:全等三角形的判定与性质,等边三角形的性质,平行线分线段成比例
专题:计算题
分析:在BC上截取CM=BE=2,连接FM,则利用等边三角形的性质得BD=EM,再根据旋转的性质得到∠DEF=60°,ED=EF,接着可证明△BDE≌△MEF,得到∠B=∠EMF=60°,BE=MF=CM,则∠MCF=∠MFC=30°,所以CH平分∠ACB;延长CH交AB于N,作GO⊥AB于O,EP⊥AB于P,根据等边三角形的性质得CN垂直平分AB,所以CN∥GO∥EP,利用平行线分线段成比例定理得到
AN
NO
=
AH
HG
=
5
2
,则ON=
2
5
AN,
NO
OP
=
FG
EG
=1,则NO=OP,所以NP=
4
5
AN=
4
5
BN,于是BP=BN-NP=
1
5
BN,然后利用∠BEP=∠NCB=30°得到BP=
1
2
BE=1,所以BN=AN=5,易得AB=2BN=10,再利用BD=AB-AD进行计算即可.
解答:解:在BC上截取CM=BE=2,连接FM,
∵△ABC为等边三角形,
∴AB=BC,∠B=60°,
D=2BE=BE+CM,
∴BD=EM,
∵将线段DE绕点E顺时针旋转60°,得到线段EF,
∴∠DEF=60°,ED=EF,
∴∠DEB+∠MEF=120°,
而∠DEB+∠BDE=120°,
∴∠BDE=∠MEF,
在△BDE和△MEF中,
BD=ME
∠BDE=∠MEF
DE=EF

∴△BDE≌△MEF(SAS),
∴∠B=∠EMF=60°,BE=FM,
∴MF=CM,
∴∠MCF=∠MFC=
1
2
∠EMF=30°,
∴CH平分∠ACB;
延长CH交AB于N,作GO⊥AB于O,EP⊥AB于P,
∵CH平分∠ACB
∴CN垂直平分AB,AN=BN,
∴CN∥GO∥EP 
AN
NO
=
AH
HG
=
5
2
,即ON=
2
5
AN,
∵G点为EF的中点,
∴EG=GF,
NO
OP
=
FG
EG
=1,
即NO=OP,
∴NP=
4
5
AN=
4
5
BN,
∴BP=BN-NP=BN-
4
5
BN=
1
5
BN,
∵PE∥CN,
∴∠BEP=∠NCB=30°,
∴BP=
1
2
BE=
1
2
×2=1,
∴BN=AN=5,
∴AB=2BN=10,
∴BD=AB-AD=10-4=6.
故答案为6.
点评:本题考查了全等三角形的判定与性质:全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.也考查了等边三角形的性质和平行线分线段成比例定理.本题难度较大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

解方程
(1)4(x-3)+3=x                       
(2)1+
x-1
2
=
x
3

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数y=ax2+bx+c(a≠0)的图象顶点在第二象限,且经过点A(2,0)和B(0,2),则w=4a-2b+c的值的变化范围是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,等腰直角△ABC中,∠A=90°,AB=AC,把等腰直角△ABC沿BD折叠,使点A落在边BC上的点E处,CE=1,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC的中线AE,BD相交于点G,DF∥BC交AE于点F,求
FG
AE
的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知矩形的面积a(a为大于0的常数).
(1)设该矩形的长x,周长为y,写出y与x之间的函数表达式;
(2)用描点法画出这个函数的图象;
(3)观察图象,写出函数两条性质.
(4)当矩形的长为何值时,它的周长是最小?最小值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

在同一直角坐标系内,若一次函数y=mx+1与y=nx-2的图象相交于x轴上的同一个点,则m:n=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,数轴A、B上两点分别对应实数a、b,则下列结论正确的是(  )
A、a+b>0
B、ab=0
C、
1
a
-
1
b
<0
D、
1
a
+
1
b
>0

查看答案和解析>>

科目:初中数学 来源: 题型:

甲乙两车从AB两地的中点同时向背而行,甲车以每小时40千米的速度行驶.到达A地后又以原来的速度立即返回,甲车到达A地时,乙车离B地还有40千米.乙车加快速度继续行驶,到达B地后也立即返回,又用了7.5小时回到中点,这时甲车离中点还有20千米.乙车加快速度后,每小时行多少千米?

查看答案和解析>>

同步练习册答案