精英家教网 > 初中数学 > 题目详情

【题目】综合题
(1)
.
(2)解分式方程:

【答案】
(1)

解:

原式=

=


(2)

解:解分式方程:

去分母,得x-2(x-3)=4

去括号,得x-2x+6=4

移项,得x-2x=4-6

合并同类项,得-x=-2

解方程得x=2

经检验:x=2是原分式方程的根

解方程得x=2

经检验:x=2是原分式方程的根


【解析】(1)所有非零数的0次幂都等于1,sin45°=;去绝对值符号时,要注意负数的绝对值是它的相反数;
(2)解分式方程:去分母,去括号,移项,合并同类项,未知数系数化为1,检验方程的解.
【考点精析】通过灵活运用去分母法和特殊角的三角函数值,掌握先约后乘公分母,整式方程转化出.特殊情况可换元,去掉分母是出路.求得解后要验根,原留增舍别含糊;分母口诀:30度、45度、60度的正弦值、余弦值的分母都是2,30度、45度、60度的正切值、余切值的分母都是3,分子口诀:“123,321,三九二十七”即可以解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】解方程: (1)x﹣3=-2x+1 (2)18(x-1)=-2(2x﹣1)(3)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合题。
(1)计算:(3﹣π)0﹣( 1+tan45°;
(2)解不等式:3(x﹣1)>2x+2.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知∠AOB=120°,COD=60°,OE平分∠BOC

(1)如图1.当∠COD在∠AOB的内部时

①若∠AOC=39°40′,求∠DOE的度数;

②若∠AOC=α,求∠DOE的度数(用含α的代数式表示),

(2)如图2,当∠COD在∠AOB的外部时,(1)中∠AOC与∠DOE的数量关系还成立吗?若成立,请推导出∠AOC与∠DOE的度数之间的关系;若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知下面三组数值:①其中是方程组的解的是(  )

A. B. C. D. 都不是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】以直线AB上一点O为端点作射线OC,使∠BOC=60°,将一个直角三角形的直角顶点放在点O处.(注:∠DOE=90°)

(1)如图1,若直角三角板DOE的一边OD放在射线OB上,则∠COE=   °;

(2)如图2,将直角三角板DOE绕点O逆时针方向转动到某个位置,若OE恰好平分∠AOC,请说明OD所在射线是∠BOC的平分线;

(3)如图3,将三角板DOE绕点O逆时针转动到某个位置时,若恰好∠COD=AOE,求∠BOD的度数?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的两边BC,AB分别在平面直角坐标系的x轴、y轴的正半轴上,正方形A′B′C′D′与正方形ABCD是以AC的中点O′为中心的位似图形,已知AC=3 ,若点A′的坐标为(1,2),则正方形A′B′C′D′与正方形ABCD的相似比是(  )
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AB=AC=AD,CAD=60°,分别连接BC、BD,作AE平分∠BACBD于点E,若BE=4,ED=8,则DF=_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣x2+12x﹣30的顶点为A,对称轴AB与x轴交于点B.在x上方的抛物线上有C、D两点,它们关于AB对称,并且C点在对称轴的左侧,CB⊥DB.

(1)求出此抛物线的对称轴和顶点A的坐标;
(2)在抛物线的对称轴上找出点Q,使它到A、C两点的距离相等,并求出点Q的坐标;
(3)延长DB交抛物线于点E,在抛物线上是否存在点P,使得△DEP的面积等于△DEC的面积?若存在,请你直接写出点P的坐标;若不存在,请说明理由.
提示:抛物线y=ax2+bx+c(a≠0)的对称轴为 ,顶点坐标为

查看答案和解析>>

同步练习册答案