分析 (1)由AD∥BC,得到∠ADB=∠EBC,又因为∠A=∠CEB=90°,推出△ABD≌△ECB;
(2)根据等腰三角形的性质和直角三角形的性质得到结果;
(3)由全等三角形的性质得到对应边相等,利用勾股定理解出结果.
解答 解:(1)证明:∵AD∥BC,
∴∠ADB=∠EBC,
∵∠A=∠CEB=90°,
在△ABD与△CEB中,$\left\{\begin{array}{l}{∠A=∠CEB}\\{∠ADB=∠EBC}\\{AB=CE}\end{array}\right.$,
∴△ABD≌△ECB;
(2)由(1)证得△ABD≌△ECB,
∴BD=BC,
∴∠BCD=∠BDC=65°,
∵∠DCE=90°-65°=25°,
∴∠ECB=40°;
(3)由(1)证得△ABD≌△ECB,
∴CE=AB=4,BE=AB=3,
∴BD=BC=$\sqrt{{4}^{2}{+3}^{2}}$=5,
∴DE=2,
∴CD=$\sqrt{{2}^{2}{+4}^{2}}$=2$\sqrt{5}$.
点评 本题考查了全等三角形的性质,直角三角形的性质,等腰三角形的判定与性质,知识的综合运用是解题的关键.
科目:初中数学 来源: 题型:选择题
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
类别 | 频数 | 频率 |
A | a | m |
B | 35 | 0.35 |
C | 20 | 0.20 |
D | b | n |
合计 | 100 | 1.00 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\frac{{\sqrt{5}}}{5}$ | B. | $\frac{{\sqrt{10}}}{5}$ | C. | $\frac{{\sqrt{10}}}{10}$ | D. | $\frac{{3\sqrt{10}}}{10}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com