分析 (1)连接OB,由切线的性质得出OB⊥AE,故可得出∠OBE=∠EBF+∠CBO=90°.再由圆周角定理得出∠CBD=∠CBO+∠OBD=90°,故∠EBF=∠OBD.根据等腰三角形的性质可知∠OBD=∠CDB,故∠EBF=∠CDB,进而可得出结论;
(2)由(1)可知△BEF∽△DBC,所以∠OBE=90°,∠E=∠C.在Rt△BOE中,利用锐角三角函数的定义即可得出结论.
解答 (1)证明:连接OB.
∵过点B的切线AE与CD的延长线交于点A,
∴OB⊥AE,
∴∠OBE=∠EBF+∠CBO=90°.
∵CD为⊙O的直径
∴∠CBD=∠CBO+∠OBD=90°,
∴∠EBF=∠OBD.
∵OB、OD是⊙O的半径,
∴OB=OD,
∴∠OBD=∠CDB,
∴∠EBF=∠CDB.
∵OE∥BD,
∴∠EFB=∠CBD
∴△BEF∽△DBC.
(2)解:∵由(1)可知△BEF∽△DBC
∴∠OBE=90°,
∴∠E=∠C.
∵∠C=32°,
∴∠E=∠C=32°.
∵⊙O的半径为3,
∴OB=3.
在Rt△BOE中,∠OBE=90°,∠E=32°,OB=3,
∴tanE=$\frac{OB}{BE}$,即tan32°=$\frac{3}{BE}$,
∴BE=$\frac{3}{tan32°}$≈4.80.
点评 本题考查的是相似三角形的判定与性质,根据题意作出辅助线,构造出相似三角形是解答此题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com