精英家教网 > 初中数学 > 题目详情
4.如图,在菱形ABCD中,∠B=60°,AB=2,扇形AEF的半径为2,圆心角为60°,则阴影部分的面积是$\frac{2}{3}π$-$\sqrt{3}$.

分析 根据菱形的性质得出△ADC和△ABC是等边三角形,进而利用全等三角形的判定得出△ADH≌△ACG,得出四边形AGCH的面积等于△ADC的面积,进而求出即可.

解答 解:∵四边形ABCD是菱形,
∴∠B=∠D=60°,AB=AD=DC=BC=2,
∴∠BCD=∠DAB=120°,
∴∠1=∠2=60°,
∴△ABC、△ADC都是等边三角形,
∴AC=AD=2,
∵AB=2,
∴△ADC的高为$\sqrt{3}$,AC=2,
∵扇形BEF的半径为1,圆心角为60°,
∴∠4+∠5=60°,∠3+∠5=60°,
∴∠3=∠4,
设AF、DC相交于HG,设BC、AE相交于点G,
在△ADH和△ACG中,
$\left\{\begin{array}{l}{∠3=∠4}\\{AC=AD}\\{∠D=∠1=60°}\end{array}\right.$,
∴△ADH≌△ACG(ASA),
∴四边形AGCH的面积等于△ADC的面积,
∴图中阴影部分的面积是:S扇形AEF-S△ACD=$\frac{60•π×{2}^{2}}{360}$-$\frac{1}{2}$×2×$\sqrt{3}$=$\frac{2}{3}π$-$\sqrt{3}$,
故答案为:$\frac{2}{3}π$-$\sqrt{3}$.

点评 此题主要考查了扇形的面积计算以及全等三角形的判定与性质等知识,根据已知得出四边形EBFD的面积等于△ABD的面积是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

14.一个正方形的周长与一个等腰三角形的周长相等,若等腰三角形的两边长为4$\sqrt{2}$和10$\sqrt{2}$,则这个正方形的对角线长为12.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.若x、y均为正整数,且2x•2y=128,则x+y的值为(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,李明在自家楼房的窗口A处,测量楼前的路灯CD的高度,现测得窗口处A到路灯顶部C的仰角为44°,到地面的距离AB为20米,楼底到路灯的距离BD为12米,求路灯CD的高度(结果精确到0.1)
【参考数据:sin44°=0.69,cos44°=0.72,tan44°=0.97】

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,直线y=kx+b(k≠0)与双曲线y=$\frac{m}{x}$(m≠0)相交于A(1,2),B(n,-1)两点.
(1)求双曲线的解析式;
(2)若A1(x1,y1),A2(x2,y2),A3(x3,y3)为双曲线上的三点,且x1<0<x2<x3,请直接写出y1,y2,y3的大小关系;
(3)观察图象,请直接写出不等式kx+b<$\frac{m}{x}$的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.在平面直角坐标xOy中,已知点A(6,0),点B(0,6),动点C在以半径为3的⊙O上,连接OC,过O点作OD⊥OC,OD与⊙O相交于点D(其中点C、O、D按逆时针方向排列),连接AB.
(1)当OC∥AB时,∠BOC的度数为45°或135°;
(2)连接AC,BC,在点C在⊙O运动过程中,△ABC的面积是否存在最大值?并求出△ABC的最大值;
(3)直接写出在(2)的条件下D点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.初三数学课本上,用“描点法”画二次函数y=ax2+bx+c的图象时.列了如下表格:
x-2-1012
y3430-5
根据表格上的信息回答问题:一元二次方程ax2+bx+c=-5的解为(  )
A.x1=2,x2=-2B.x1=2,x2=-3C.x1=2,x2=-4D.x1=2,x2=-5

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.解不等式组$\left\{\begin{array}{l}{2x-1≤1}\\{\frac{x-1}{4}<\frac{x}{3}}\end{array}\right.$,并把解集在数轴上表示出来.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.计算:(3-π)0-2cos45°-|$\sqrt{2}$-2|+(-$\frac{1}{2}$)-2

查看答案和解析>>

同步练习册答案