精英家教网 > 初中数学 > 题目详情
(2013•南充)如图1,点E为矩形ABCD边AD上一点,点P,点Q同时从点B出发,点P沿BE→ED→DC运动到点C停止,点Q沿BC运动到点C停止,它们的运动速度都是1cm/s,设P,Q出发t秒时,△BPQ的面积为ycm2,已知y与t的函数关系的图象如图2(曲线OM为抛物线的一部分),则下列结论:
①AD=BE=5cm;
②当0<t≤5时,y=
2
5
t2
③直线NH的解析式为y=-
2
5
t+27;
④若△ABE与△QBP相似,则t=
29
4
秒,
其中正确结论的个数为(  )
分析:据图(2)可以判断三角形的面积变化分为三段,可以判断出当点P到达点E时点Q到达点C,从而得到BC、BE的长度,再根据M、N是从5秒到7秒,可得ED的长度,然后表示出AE的长度,根据勾股定理求出AB的长度,然后针对各小题分析解答即可.
解答:解:根据图(2)可得,当点P到达点E时点Q到达点C,
∵点P、Q的运动的速度都是1cm/秒,
∴BC=BE=5cm,
∴AD=BE=5,故①正确;

如图(1)过点P作PF⊥BC于点F,
根据面积不变时△BPQ的面积为10,可得AB=4,

∵AD∥BC,
∴∠AEB=∠PBF,
∴sin∠PBF=sin∠AEB=
AB
BE
=
4
5

∴PF=PBsin∠PBF=
4
5
t,
∴当0<t≤5时,y=
1
2
BQ•PF=
1
2
t•
4
5
t=
2
5
t2,故②选项正确;

根据5-7秒面积不变,可得ED=2,
当点P运动到点C时,面积变为0,此时点P走过的路程为BE+ED+DC=11,
故点H的坐标为(11,0),
设直线NH的解析式为y=kx+b,
将点H(11,0),点N(7,10)代入可得:
11k+b=0
7k+b=10

解得:
k=-
5
2
b=
55
2

故直线NH的解析式为:y=-
5
2
t+
55
2
.故③错误;

如图所示,当△ABE与△QBP相似时,点P在DC上,如图2所示:
∵tan∠PBQ=tan∠ABE=
3
4

PQ
BQ
=
3
4
,即
11-t
5
=
3
4

解得:t=
29
4

综上可得①②④正确,共3个.
故选B.
点评:本题考查了二次函数的综合应用及动点问题的函数图象,根据图(2)判断出点P到达点E时,点Q到达点C是解题的关键,也是本题的突破口,难度较大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•南充)如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•南充)如图,等腰梯形ABCD中,AD∥BC,AD=3,BC=7,∠B=60°,P为BC边上一点(不与B,C重合),过点P作∠APE=∠B,PE交CD于E.
(1)求证:△APB∽△PEC;
(2)若CE=3,求BP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•南充)如图,正方形ABCD的边长为2
2
,过点A作AE⊥AC,AE=1,连接BE,则tanE=
2
3
2
3

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•南充)如图,在平行四边形ABCD中,对角线AC,BD交于点O,经过点O的直线交AB于E,交CD于F.
求证:OE=OF.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•南充)如图,二次函数y=x2+bx-3b+3的图象与x轴交于A,B两点(点A在点B的左边),交y轴于点C,且经过点(b-2,2b2-5b-1).
(1)求这条抛物线的解析式;
(2)⊙M过A,B,C三点,交y轴于另一点D,求点M的坐标;
(3)连接AM,DM,将∠AMD绕点M顺时针旋转,两边MA,MD与x轴,y轴分别交于点E,F.若△DMF为等腰三角形,求点E的坐标.

查看答案和解析>>

同步练习册答案