3£®Èçͼ1£¬ÔÚÖ±½Ç×ø±êϵxOyÖУ¬Õý·½ÐÎOCBAµÄ¶¥µãA¡¢C·Ö±ðÔÚyÖá¡¢xÖáÉÏ£¬µãB×ø±êΪ£¨6£¬6£©£¬Å×ÎïÏßy=ax2+bx+c¾­¹ýµãA¡¢BÁ½µã£¬ÇÒ3a-b=-1£®
£¨1£©ÇëÇó³ö¶þ´Îº¯Êýy=ax2+bx+cµÄ½âÎöʽ£»
£¨2£©Èç¹û¶¯µãE¡¢Fͬʱ·Ö±ð´ÓµãA¡¢µãB³ö·¢£¬·Ö±ðÑØA¡úB¡¢B¡úCÔ˶¯£¬Ëٶȶ¼ÊÇÿÃë1¸öµ¥Î»³¤¶È£¬µ±µãEµ½´ïÖÕµãBʱ£¬µãE¡¢FËæֹ֮ͣÔ˶¯£®ÉèÔ˶¯Ê±¼äΪtÃ룬¡÷EBFµÄÃæ»ýΪS£®
¢ÙÊÔÇó³öSÓëtÖ®¼äµÄº¯Êý¹Øϵʽ£¬²¢Çó³öSµÄ×î´óÖµ£»
¢Úµ±SÈ¡µÃ×î´óֵʱ£¬ÔÚÅ×ÎïÏßÉÏÊÇ·ñ´æÔÚµãR£¬Ê¹µÃÒÔE¡¢B¡¢R¡¢FΪ¶¥µãµÄËıßÐÎÊÇƽÐÐËıßÐΣ¿Èç¹û´æÔÚ£¬Çó³öµãRµÄ×ø±ê£»Èç¹û²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©¸ù¾ÝµãA¡¢BµÄ×ø±êºÍ3a-b=1ÀûÓôý¶¨ÏµÊý·¨¼´¿ÉÇó³ö¶þ´Îº¯ÊýµÄ½âÎöʽ£»
£¨2£©¢ÙÔ˶¯¿ªÊ¼tÃëʱ£¬EB=6-t£¬BF=t£¬¸ù¾ÝÈý½ÇÐεÄÃæ»ý¹«Ê½¼´¿ÉµÃ³öS¹ØÓÚtµÄº¯Êý¹Øϵʽ£¬ÀûÓÃÅä·½·¨¼´¿ÉµÃ³ö×îÖµÎÊÌ⣻
¢Ú¼ÙÉè´æÔÚ£¬½áºÏ¢Ù¿ÉµÃ³öµãE¡¢FµÄ×ø±ê£¬·Ö±ðÒÔBE¡¢BF¡¢EFΪ¶Ô½ÇÏ߸ù¾ÝƽÐÐËıßÐεÄÐÔÖÊÇó³öµãRµÄ×ø±ê£¬ÔÙÓɵãRÔÚÅ×ÎïÏßÉÏÀûÓöþ´Îº¯ÊýͼÏóÉϵÄ×ø±êÌØÕ÷È·¶¨µãRµÄ×ø±ê£¬´ËÌâµÃ½â£®

½â´ð ½â£º£¨1£©ÒÑÖªµãA£¨0£¬6£©£¬B£¨6£¬6£©ÔÚÅ×ÎïÏßÉÏ£¬ÇÒ3a-b=-1£¬
¡à$\left\{\begin{array}{l}{6=c}\\{6=36a+6b+c}\\{3a-b=-1}\end{array}\right.$£¬½âµÃ£º$\left\{\begin{array}{l}{a=-\frac{1}{9}}\\{b=\frac{2}{3}}\\{c=6}\end{array}\right.$£¬
¡à¶þ´Îº¯ÊýµÄ½âÎöʽΪy=-$\frac{1}{9}$x2+$\frac{2}{3}$x+6£®
£¨2£©¢ÙÔ˶¯¿ªÊ¼tÃëʱ£¬EB=6-t£¬BF=t£¬
S=$\frac{1}{2}$BE•BF=$\frac{1}{2}$£¨6-t£©t=-$\frac{1}{2}$t2+3t=-$\frac{1}{2}$£¨t-3£©2+$\frac{9}{2}$£®
µ±t=3ʱ£¬SÓÐ×î´óÖµ$\frac{9}{2}$£®
¢Ú¼ÙÉè´æÔÚ£¬µ±SÈ¡µÃ×î´óֵʱ£¬ÓÉ¢ÙÖªt=3£¬
¡àµãE£¨3£¬6£©£¬µãF£¨6£¬3£©£®
ÒÔE¡¢B¡¢R¡¢FΪ¶¥µãµÄËıßÐÎÊÇƽÐÐËıßÐηÖÈýÖÖÇé¿ö£¨Èçͼ£©£º
£¨i£©ÒÔBEΪ¶Ô½ÇÏßʱ£¬
¡ßµãB£¨6£¬6£©£¬µãE£¨3£¬6£©£¬µãF£¨6£¬3£©£¬
¡àµãR£¨6+3-6£¬6+6-3£©£¬¼´£¨3£¬9£©£»
£¨ii£©ÒÔBFΪ¶Ô½ÇÏßʱ£¬
¡ßµãB£¨6£¬6£©£¬µãE£¨3£¬6£©£¬µãF£¨6£¬3£©£¬
¡àµãR£¨6+6-3£¬6+3-6£©£¬¼´£¨9£¬3£©£»
£¨iii£©ÒÔEFΪ¶Ô½ÇÏßʱ£¬
¡ßµãB£¨6£¬6£©£¬µãE£¨3£¬6£©£¬µãF£¨6£¬3£©£¬
¡àµãR£¨6+3-6£¬6+3-6£©£¬¼´£¨3£¬3£©£®
¡ßµãRÔÚÅ×ÎïÏßy=-$\frac{1}{9}$x2+$\frac{2}{3}$x+6ÉÏ£¬
¡àµãRµÄ×ø±êΪ£¨9£¬3£©£®
¹ÊÅ×ÎïÏßÉÏ´æÔÚµãR£¨9£¬3£©£¬Ê¹µÃËıßÐÎEBRFΪƽÐÐËıßÐΣ®

µãÆÀ ±¾Ì⿼²éÁË´ý¶¨ÏµÊý·¨Çóº¯Êý½âÎöʽ¡¢Èý½ÇÐεÄÃæ»ý¹«Ê½¡¢¶þ´Îº¯ÊýµÄÐÔÖÊÒÔ¼°Æ½ÐÐËıßÐεÄÐÔÖÊ£¬½âÌâµÄ¹Ø¼üÊÇ£º£¨1£©ÀûÓôý¶¨ÏµÊý·¨Çó³öº¯Êý½âÎöʽ£»£¨2£©¢Ù¸ù¾ÝÈý½ÇÐεÄÃæ»ý¹«Ê½ÕÒ³öS¹ØÓÚtµÄº¯Êý¹Øϵʽ£»¢ÚÀûÓÃƽÐÐËıßÐεÄÐÔÖÊÇó³öµãRµÄ×ø±ê£®±¾ÌâÊôÓÚÖеµÌ⣬ÄѶȲ»´ó£¬½â¾ö¸ÃÌâÐÍÌâĿʱ£¬¸ù¾ÝƽÐÐÏßµÄÐÔÖʶԽÇÏß»¥Ïàƽ·Ö½áºÏÈý¸ö¶¥µãµÄ×ø±êÇó³öµÚËĸö¶¥µãµÄ×ø±êÊǹؼü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®Èçͼij´±´óÂ¥¶¥²¿ÓÐÒ»¹ã¸æÅÆCD£¬¼×¡¢ÒÒÁ½ÈË·Ö±ðÔÚÏà¾à8Ã×µÄA¡¢BÁ½´¦²âµÃDµãºÍCµãµÄÑö½Ç·Ö±ðΪ45¡ãºÍ60¡ã£¬ÇÒA¡¢B¡¢EÈýµãÔÚÒ»Ö±Ïߣ¨¡ÏAEC=90¡ã£©ÉÏ£¬ÈôBE=15Ã×£¬ÇóÕâ¿é¹ã¸æÅƵÄCD£®£¨È¡ $\sqrt{3}$=1.73£¬¼ÆËã½á¹û±£ÁôÕûÊý£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®Èç¹û°Ñ·Öʽ$\frac{xy}{x+y}$ÖеÄxºÍy¶¼À©´óΪԭÀ´µÄ2±¶£¬ÄÇô·ÖʽµÄÖµ£¨¡¡¡¡£©
A£®À©´óΪԭÀ´µÄ4±¶B£®À©´óΪԭÀ´µÄ2±¶C£®²»±äD£®ËõСΪԭÀ´µÄ$\frac{1}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®Ò»×éÊý¾Ý2£¬0£¬-2£¬1£¬3µÄÖÐλÊýÊÇ£¨¡¡¡¡£©
A£®-1B£®-2C£®1D£®1.5

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®Ä³Ð£¿ªÕ¹Ñ§Éú°²È«ÖªÊ¶¾ºÈü£®ÏÖ³éÈ¡²¿·ÖѧÉúµÄ¾ºÈü³É¼¨£¨Âú·ÖΪ100·Ö£¬µÃ·Ö¾ùΪÕûÊý£©½øÐÐͳ¼Æ£¬»æÖÆÁËͼÖÐÁ½·ù²»ÍêÕûµÄͳ¼Æͼ£®¸ù¾ÝͼÖÐÐÅÏ¢£¬»Ø´ðÏÂÁÐÎÊÌ⣺
£¨1£©a=60£¬n=  54£»
£¨2£©²¹È«ÆµÊý·Ö²¼Ö±·½Í¼£»
£¨3£©¸ÃУ¹²ÓÐ2 000ÃûѧÉú£®Èô³É¼¨ÔÚ80·ÖÒÔÉϵÄΪÓÅÐ㣬ÇëÄã¹À¼Æ¸ÃУ³É¼¨ÓÅÐãµÄѧÉúÈËÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®Èçͼ£¬ÒÑÖª£¬ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬A£¨-3£¬-4£©£¬B£¨0£¬-2£©£®
£¨1£©¡÷OABÈÆOµãÐýת180¡ãµÃµ½¡÷OA1B1£¬Çë»­³ö¡÷OA1B1£¬²¢Ð´³öA1£¬B1µÄ×ø±ê£»
£¨2£©Ö±½ÓÅжÏÒÔA£¬B£¬A1£¬B1Ϊ¶¥µãµÄËıßÐεÄÐÎ×´£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®½âÏÂÁз½³Ì£º
£¨1£©$\frac{30}{x}=\frac{20}{x+1}$
£¨2£©$\frac{x-2}{x+2}-\frac{x+2}{x-2}=\frac{16}{{{x^2}-4}}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®Èçͼ£¬ÔÚÿ¸öСÕý·½Ðεı߳¤¾ùΪ1µÄ·½¸ñÖ½ÖУ¬ÓÐÏ߶ÎAB£¬µãA¡¢B¾ùÔÚСÕý·½ÐεĶ¥µãÉÏ£®
£¨1£©ÔÚ·½¸ñÖ½Öл­³öÒÔABΪһ±ßµÄµÈÑü¡÷ABC£¬µãCÔÚСÕý·½ÐεĶ¥µãÉÏ£¬ÇÒ¡÷ABCµÄÃæ»ýΪ6£®
£¨2£©ÔÚ·½¸ñÖ½Öл­³ö¡÷ABCµÄÖÐÏßBD£¬²¢°ÑÏ߶ÎBDÈƵãCÄæʱÕëÐýת90¡ã£¬»­³öÐýתºóµÄÏ߶ÎEF£¨BÓëE¶ÔÓ¦£¬DÓëF¶ÔÓ¦£©£¬Á¬½ÓBF£¬ÇëÖ±½Óд³öBFµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®ÔÚÒ»´Îº¯Êýy=kx+b£¨k£¼0£©µÄͼÏóÉÏÓÐA£¨-1£¬a£©ºÍB£¨2£¬b£©Á½¸öµã£¬Ôòa£¾b£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸