精英家教网 > 初中数学 > 题目详情
已知:如图,平行四边形ABCD两条对角线AC、BD相交于点O,过O作一直线分别交AD、BC于点M、N,
求证:OM=ON.

【答案】分析:根据平行四边形的对角线互相平分可得OA=OC,再根据平行四边形的对边平行可得AD∥BC,利用两直线平行,内错角相等可得∠MAO=∠NCO,然后利用“角边角”证明△AMO和△CNO全等,根据全等三角形对应边相等即可得证.
解答:证明:平行四边形ABCD中,OA=OC,AD∥BC,
∴∠MAO=∠NCO,
在△AMO和△CNO中,
∴△AMO≌△CNO(ASA),
∴OM=ON.
点评:本题考查了平行四边形的对角线互相平分,对边平行的性质,全等三角形的判定与性质,比较简单.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(本题满分6分)已知:如图,E、F是平行四边行ABCD的对角线AC上的两点,AE=CF。

求证:(1)△ADF≌△CBE;(2)EB∥DF。

 

查看答案和解析>>

科目:初中数学 来源: 题型:

(本题满分6分)已知:如图,E、F是平行四边行ABCD的对角线AC上的两点,AE=CF。

求证:(1)△ADF≌△CBE;(2)EB∥DF。

查看答案和解析>>

科目:初中数学 来源:2010-2011学年江苏省江阴市夏港中学九年级第二学期期中考试数学卷 题型:解答题

(本题满分6分)已知:如图,E、F是平行四边行ABCD的对角线AC上的两点,AE=CF。

求证:(1)△ADF≌△CBE;(2)EB∥DF。

查看答案和解析>>

科目:初中数学 来源:2011-2012学年山东省九年级上学期阶段检测数学卷(解析版) 题型:解答题

已知:如图,E、F是平行四边行ABCD的对角线AC上的两点,AE=CF。

求证:(1)△ADF≌△CBE;(2)EB∥DF。

【解析】要证△ADF≌△CBE,因为AE=CF,则两边同时加上EF,得到AF=CE,又因为ABCD是平行四边形,得出AD=CB,∠DAF=∠BCE,从而根据SAS推出两三角形全等,由全等可得到∠DFA=∠BEC,所以得到DF∥EB

 

查看答案和解析>>

科目:初中数学 来源:2011届江苏省江阴市九年级第二学期期中考试数学卷 题型:解答题

(本题满分6分)已知:如图,E、F是平行四边行ABCD的对角线AC上的两点,AE=CF。

求证:(1)△ADF≌△CBE;(2)EB∥DF。

 

查看答案和解析>>

同步练习册答案