分析 利用60°的正切值可表示出FG长,进而利用∠ACG的正切函数求AG长,加上2m即为这幢教学楼的高度AB.
解答 解:在Rt△AFG中,tan∠AFG=$\frac{AG}{FG}$,
∴FG=$\frac{AG}{tan∠AFG}$=$\frac{AG}{\sqrt{3}}$,
在Rt△ACG中,tan∠ACG=$\frac{AG}{CG}$,
∴CG=$\frac{AG}{tan∠ACG}$=$\sqrt{3}$AG.
又∵CG-FG=30m,
即$\sqrt{3}$AG-$\frac{AG}{\sqrt{3}}$=30m,
∴AG=15$\sqrt{3}$m,
∴AB=(15$\sqrt{3}$+2)m.
点评 本题考查了解直角三角形的应用-仰角俯角问题,构造仰角所在的直角三角形,利用两个直角三角形的公共边求解是常用的解直角三角形的方法.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | x2-x-5=6x-4 | B. | x2-7x=1 | C. | x2-7x-1=0 | D. | x2-7x-9=0 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com