精英家教网 > 初中数学 > 题目详情

【题目】某品牌牛奶供应商提供A,B,C,D四种不同口味的牛奶供学生饮用.某校为了了解学生对不同口味的牛奶的喜好,对全校订牛奶的学生进行了随机调查,并根据调查结果绘制了如下两幅不完整的统计图.根据统计图的信息解决下列问题

(1)本次调查的学生有多少人?

(2)补全上面的条形统计图;

(3)扇形统计图中C对应的中心角度数是_____

(4)若该校有600名学生订了该品牌的牛奶,每名学生每天只订一盒牛奶,要使学生能喝到自己喜欢的牛奶,则该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约多少盒?

【答案】(1)150人;(2)补图见解析;(3)144°;(4)300盒.

【解析】

(1)根据喜好A口味的牛奶的学生人数和所占百分比,即可求出本次调查的学生数.

(2)用调查总人数减去A、B、D三种喜好不同口味牛奶的人数,求出喜好C口味牛奶的人数,补全统计图.再用360°乘以喜好C口味的牛奶人数所占百分比求出对应中心角度数.

(3)用总人数乘以A、B口味牛奶喜欢人数所占的百分比得出答案.

解:(1)本次调查的学生有30÷20%=150人;

(2)C类别人数为150﹣(30+45+15)=60人,

补全条形图如下:

(3)扇形统计图中C对应的中心角度数是360°×=144°

故答案为:144°

(4)600×()=300(人),

答:该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约300盒.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AB是半圆O的直径,BC是弦,点P从点A开始,沿AB向点B1 cm/s的速度移动,若AB长为10 cm,点OBC的距离为4 cm.

(1)求弦BC的长;

(2)经过几秒△BPC是等腰三角形?(PB不能为底边)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AB是⊙O的弦,C的中点,联结OAAC,如果∠OAB20°,那么∠CAB的度数是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某镇道路改造工程,由甲、乙两工程队合作20天可完成.甲工程队单独施工比乙工程队单独施工多用30天完成此项工程.

1)求甲、乙两工程队单独完成此项工程各需要多少天?

2)若甲工程队独做a天后,再由甲、乙两工程队合作 天(用含a的代数式表示)可完成此项工程;

3)如果甲工程队施工每天需付施工费1万元,乙工程队施工每天需付施工费2.5万元,甲工程队至少要单独施工多少天后,再由甲、乙两工程队合作施工完成剩下的工程,才能使施工费不超过64万元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,菱形OABC的一边OAx轴正半轴上,OB2,∠C120°.将菱形OABC绕原点O顺时针旋转75°至第四象限OA′B′C′的位置,则点B′的坐标为(

A. 2 B. 2,﹣ C. D. ,﹣

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,ABC 顶点 A23).若以原点 O 为位似中心,画三角形 ABC

的位似图形A′B′C′,使ABC A′B′C′的相似比为,则 A′的坐标为(

A. (3, ) B. ( ,6) C. (3, )(-3,- ) D. ( ,6)(- ,-6)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=ax2+ x+cx轴交于A,B两点,与y轴交于丁C,且A(2,0),C(0,﹣4),直线l:y=﹣ x﹣4x轴交于点D,点P是抛物线y=ax2+x+c上的一动点,过点PPEx轴,垂足为E,交直线l于点F.

(1)试求该抛物线表达式;

(2)求证:点C在以AD为直径的圆上;

(3)是否存在点P使得四边形PCOF是平行四边形,若存在求出P点的坐标,不存在请说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠C=90°,AC=3,BC=4.动点O在边CA上移动,且⊙O的半径为2.

(1)若圆心O与点C重合,则⊙O与直线AB________; (2)当OC等于________时,⊙O与直线AB相切.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠ACB90°,点DE分别在ABAC上,且CEBC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得到CF,连接EF

1)求证:△BDC≌△EFC

2)若EFCD,求证:∠BDC90°.

查看答案和解析>>

同步练习册答案