精英家教网 > 初中数学 > 题目详情
如图,形如三角板的△ABC中,∠ACB=90°,∠ABC=30°,BC=10cm.点O以2cm/s的速度在直线BC上从左向右运动,设运动时间为t(s),当t=0s时,点O在△ABC的左侧,OC=5cm.以点O为圆心、
12
t
cm长度为半径r的半圆O与直线BC交于D、E两点
(1)当t为何值时,△ABC的一边所在直线与半圆O所在的圆相切?
(2)当△ABC的一边所在直线与半圆O所在的圆相切时,如果半圆O与直线DE围成的区域与△ABC三边围成的区域有重叠部分,求重叠部分的面积.
精英家教网
分析:(1)随着半圆的运动分四种情况:①当点E与点C重合时,AC与半圆相切,②当点O运动到点C时,AB与半圆相切,③当点O运动到BC的中点时,AC再次与半圆相切,④当点O运动到B点的右侧时,AB的延长线与半圆所在的圆相切.分别求得半圆的圆心移动的距离后,再求得运动的时间.
(2)在1中的②,③中半圆与三角形有重合部分.在②图中重叠部分是圆心角为90°,半径为6cm的扇形,故可根据扇形的面积公式求解.在③图中,所求重叠部分面积为=S△POB+S扇形DOP
解答:解:(1)①如图1,当点E与点C重合时,
∵AC⊥DE,OC=OE=
1
2
t
cm,
∴AC与半圆O所在的圆相切,
∵原来OC=5,
∴点O运动了(5-
t
2
)cm,
∵点O以2cm/s的速度在直线BC上从左向右运动,
∴运动时间为:t=
5-
t
2
2

t=2(秒),
∴当t=2时,△ABC的边AC所在直线与半圆O所在的圆相切,
②如图2,经过t秒后,动圆圆心移动的为2t,而原来OB=OC+BC=15,此时动圆圆心到B的距离为(15-2t),
此时动圆圆心到AB的距离为
15-2t
2
(30度角所对的直角边等于斜边的一半),
而此时圆的半径是
1
2
t,
则可得:
15-2t
2
=
1
2
t,
解得:t=5.
③如图3,当圆与AC相切时,2t-5=
1
2
t,解得:t=
10
3
秒;
④如图4,当点O运动到B点的右侧,OB=2t-5-BC=2t-15,
∵在Rt△QOB中,∠OBQ=30°,
∴OQ=
1
2
OB=
1
2
(2t-15)=t-
15
2

圆O的半径是
1
2
t,则t-
15
2
=
t
2
,解得:t=15.
总之,当t为2s,10s,
10
3
s,15s时,△ABC的一边所在的直线与半圆O所在圆相切.
精英家教网

(2)当△ABC的一边所在的直线与半圆O所在的圆相切时,半圆O与直径DE围成的区域与△ABC三边围成的区域有重叠部分的只有如图②与③所示的两种情形.
①如图②,设OA与半圆O的交点为M,易知重叠部分是圆心角为90°,半径为5cm的扇形,所求重叠部分面积为:S扇形EOM=
1
4
π×52=
25
4
π(cm2
②图③,当圆O与AC相切时,半径长是
1
2
×
10
3
=
5
3

则半圆O在△ABC的内部,因而重合部分就是半圆O,则面积是:
1
2
π(
5
3
2=
25π
18
点评:本题利用了直线与圆相切的概念,扇形的面积公式,直角三角形的面积公式,锐角三角函数的概念求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,形如三角板的△ABC中,∠ACB=90°,∠ABC=45°,BC=12cm,形如矩形量角器的半圆O的直径DE=12cm,矩形DEFG的宽EF=6cm,矩形量角器以2cm/s的速度从左向右运动,在运动过程中,点D、E始终在BC所在的直线上,设运动时间为x(s),矩形量角器和△ABC的重叠部分的面积为S(cm2).当x=0(s)时,点E与点C重合.(图(3)、图(4)、图(5)供操作用).
(1)当x=3时,如图(2),S=
 
cm2,当x=6时,S=
 
cm2,当x=9时,S=
 
cm2
(2)当3<x<6时,求S关于x的函数关系式;
(3)当6<x<9时,求S关于x的函数关系式;
(4)当x为何值时,△ABC的斜边所在的直线与半圆O所在的圆相切?
精英家教网精英家教网
精英家教网

查看答案和解析>>

科目:初中数学 来源:2007年湖北恩施自治州初中毕业、升学考试数学试卷 题型:044

如图,形如三角板的△ABC中,∠ACB=90°,∠ABC=45°,BC=12 cm,形如矩形量角器的半圆O的直径DE=12 cm,矩形DEFG的宽EF=6 cm,矩形量角器以2 cm/s的速度从左向右运动,在运动过程中,点D、E始终在BC所在的直线上,设运动时间为x(s),矩形量角器和△ABC的重叠部分的面积为S(cm2).当x=0(s)时,点E与点C重合.(图(3)、图(4)、图(5)供操作用).

(1)当x=3时,如图(2),S________cm2

x=6时,S________cm2

x=9时,S________cm2

(2)当3<x<6时,求S关于x的函数关系式;

(3)当6<x<9时,求S关于x的函数关系式;

(4)当x为何值时,△ABC的斜边所在的直线与半圆O所在的圆相切?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,形如三角板的△ABC中,∠ACB=90°,∠ABC=30°,BC=10cm.点O以2cm/s的速度在直线BC上从左向右运动,设运动时间为t(s),当t=0s时,点O在△ABC的左侧,OC=5cm.以点O为圆心、数学公式cm长度为半径r的半圆O与直线BC交于D、E两点
(1)当t为何值时,△ABC的一边所在直线与半圆O所在的圆相切?
(2)当△ABC的一边所在直线与半圆O所在的圆相切时,如果半圆O与直线DE围成的区域与△ABC三边围成的区域有重叠部分,求重叠部分的面积.

查看答案和解析>>

科目:初中数学 来源:第3章《圆》中考题集(48):3.5 直线和圆的位置关系(解析版) 题型:解答题

如图,形如三角板的△ABC中,∠ACB=90°,∠ABC=45°,BC=12cm,形如矩形量角器的半圆O的直径DE=12cm,矩形DEFG的宽EF=6cm,矩形量角器以2cm/s的速度从左向右运动,在运动过程中,点D、E始终在BC所在的直线上,设运动时间为x(s),矩形量角器和△ABC的重叠部分的面积为S(cm2).当x=0(s)时,点E与点C重合.(图(3)、图(4)、图(5)供操作用).
(1)当x=3时,如图(2),S=______cm2,当x=6时,S=______cm2,当x=9时,S=______cm2
(2)当3<x<6时,求S关于x的函数关系式;
(3)当6<x<9时,求S关于x的函数关系式;
(4)当x为何值时,△ABC的斜边所在的直线与半圆O所在的圆相切?


查看答案和解析>>

同步练习册答案