精英家教网 > 初中数学 > 题目详情
13.如图,等边△ABC中,点D、E、F分别同时从点A、B、C出发,以相同的速度在AB、BC、CA上运动,连结DE、EF、DF.
(1)证明:△DEF是等边三角形;
(2)在运动过程中,当△CEF是直角三角形时,试求$\frac{{S}_{△DEF}}{{S}_{△ABC}}$的值.

分析 (1)根据等边三角形的性质得出∠A=∠B=∠C=60°,AB=BC=CA,AD=BE=CF,进一步证得BD=EC=AF,即可证得△ADF≌△BED≌△CFE,根据全等三角形的性质得出DE=EF=FD,即可证得△DEF是等边三角形;
(2)由△ABC和△DEF是等边三角形,得出△DEF∽△ABC,再根据相似三角形的性质即可得出结论.

解答 (1)证明:∵△ABC是等边三角形,
∴∠A=∠B=∠C=60°,AB=BC=CA,
∵AD=BE=CF,
∴BD=EC=AF,
在△ADF、△BED和△CFE中
$\left\{\begin{array}{l}{AD=BE=CF}\\{∠A=∠B=∠C}\\{BD=CE=AF}\end{array}\right.$
∴△ADF≌△BED≌△CFE,
∴DE=EF=FD,
∴△DEF是等边三角形;

(2)解:∵△ABC和△DEF是等边三角形,
∴△DEF∽△ABC,
∵DE⊥BC,
∴∠BDE=30°,
∴BE=$\frac{1}{2}$BD,即BE=$\frac{1}{3}$BC,CE=$\frac{2}{3}$BC,
∵EF=EC•sin60°=$\frac{2}{3}$BC•$\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}}{3}$BC,
∴$\frac{{S}_{△DEF}}{{S}_{△ABC}}$=($\frac{EF}{BC}$)2=($\frac{\sqrt{3}}{3}$)2=$\frac{1}{3}$.

点评 本题考查的是等边三角形的性质,熟知等边三角形的三个内角都相等,且都等于60°是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

3.已知(1,y1),($\frac{1}{2}$,y2)两点都在一次函数y=$\frac{1}{2}$x-3的图象上,则y1>y2(填“>”“<”或“﹦”)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,平面直角坐标系xOy中,点O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,点P在边BC上以每秒1个单位长的速度由点C向点B运动.
(1)当四边形PODB是平行四边形时,求t的值;
(2)在线段PB上是否存在一点Q,使得四边形ODQP为菱形?若存在,求处当四边形ODQP为菱形时t的值,并求出Q点的坐标;若不存在,请说明理由;
(3)△OPD为等腰三角形时,写出点P的坐标(请直接写出答案,不必写过程).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.关于x的分式方程$\frac{1}{{x}^{2}-4}$-$\frac{m}{x+2}$=0无解,则m的值为0或-$\frac{1}{4}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.一次函数经过点A(0,2)且与函数y=-x相交与点B,已知点B的横坐标是-1,求该一次函数的表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.已知点M(1,4),点A(-1,0),点P是y轴上一点,点Q是坐标平面内一点,以A、M、P,Q为顶点的四边形是矩形,画出符合条件的图形,并求出点Q的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.抛物线y=ax2-2x与x轴正半轴相交于点A,顶点为B.
(1)用含a的式子表示点B的坐标;
(2)经过点C(0,-2)的直线AC与OB(O为原点)相交于点D,与抛物线的对称轴相交于点E,△OCD≌△BED,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,Rt△ABC中,∠ACB=90°,CD是斜边AB上的高.
(1)求证:△ADC∽△ACB;
(2)若AC=4,BC=3,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.已知直线y=kx+b经过点A(1,4),B(4,2),求:k,b的值.

查看答案和解析>>

同步练习册答案