【题目】在等边 中, 是边 上一点,连接 ,将 绕点 逆时针旋转 ,得到 ,连接 ,若 ,,有下列结论:① ;② ;③ 是等边三角形;④ 的周长是 .其中,正确结论的个数是
A.B.C.D.
【答案】C
【解析】
根据等边三角形的性质得∠ABC=∠C=60°,AC=BC=5,再利用旋转的性质得∠BAE=∠C=60°,AE=CD,则∠BAE=∠ABC,于是根据平行线的判定可对①进行判断;由△BCD绕点B逆时针旋转60°,得到△BAE得到∠DBE=60°,BD=BE=4,则根据边三角形的判定方法得到△BDE为等边三角形,于是可对③进行判断;根据等边三角形的性质得∠BDE=60°,DE=DB=4,然后说明∠BDC>60°,则∠ADE<60°,于是可对②进行判断;最后利用AE=CD,DE=BD=4和三角形周长定义可对④进行判断.
∵△ABC为等边三角形,
∴∠ABC=∠C=60°,AC=BC=5,
∵△BCD绕点B逆时针旋转60°,得到△BAE,
∴∠BAE=∠C=60°,AE=CD,
∴∠BAE=∠ABC,
∴AE∥BC,所以①正确;
∵△BCD绕点B逆时针旋转60°,得到△BAE,
∴∠DBE=60°,BD=BE=4,
∴△BDE为等边三角形,所以③正确,
∴∠BDE=60°,DE=DB=4,
在△BDC中,∵BC>BD,
∴∠BDC>∠C,即∠BDC>60°,
∴∠ADE<60°,所以②错误;
∵AE=CD,DE=BD=4,
∴△ADE的周长=AD+AE+DE=AD+CD+DB=AC+BD=5+4=9,所以④正确.
故选:C.
科目:初中数学 来源: 题型:
【题目】如图,的顶点A、B分别在x轴,y轴上,,且的面积为8.
直接写出A、B两点的坐标;
过点A、B的抛物线G与x轴的另一个交点为点C.
若是以BC为腰的等腰三角形,求此时抛物线的解析式;
将抛物线G向下平移4个单位后,恰好与直线AB只有一个交点N,求点N的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,抛物线与x轴交于,点两点,与y轴交于点C
求抛物线的解析式:
若点P是抛物线上在第二象限内的一个动点,且点P的横坐标为t,连接PA、PC、AC.
求的面积S关于t的函数关系式.
求的面积的最大值,并求出此时点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC,按以下步骤作图:①分别以 B,C 为圆心,以大于BC 的长为半径作弧,两弧相交于两点 M,N;②作直线 MN 交 AB 于点 D,连接 CD.若 CD=AC,∠A=50°,则∠ACB 的度数为
A.90°B.95°C.105°D.110°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,为的直径,弦于点,在的延长线上取一点,与相切于点,连接交于点.
(1)如图①,若,求和的大小;
(2)如图②,若为半径的中点,,且,求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,AP是⊙O的切线,点A为切点,BP与⊙O交于点C,点D是AP的中点,连结CD.
(1)求证:CD是⊙O的切线;
(2)若AB=2,∠P=30°,求阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一只不透明的袋子中装有2个白球和1个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球(不放回),再从余下的2个球中任意摸出1个球.
(1)用树状图或列表等方法列出所有可能出现的结果;
(2)求两次摸到的球的颜色不同的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+c经过点(﹣1,0),对称轴l如图所示,则下列结论:①abc>0;②a﹣b+c=0;③2a+c<0;④a+b<0,其中所有正确的结论是( )
A.①③ B.②③ C.②④ D.②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙、丙三位运动员在相同条件下各射靶10次,每次射靶的成绩如下:
甲:9,10,8,5,7,8,10,8,8,7;
乙:5,7,8,7,8,9,7,9,10,10;
丙:7,6,8,5,4,7,6,3,9,5.
(1)根据以上数据完成下表:
平均数 | 中位数 | 方差 | |
甲 | 8 | 8 | |
乙 | 8 | 8 | 2.2 |
丙 | 6 | 3 |
(2)依据表中数据分析,哪位运动员的成绩最稳定,并简要说明理由;
(3)比赛时三人依次出场,顺序由抽签方式决定.求甲、乙相邻出场的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com