精英家教网 > 初中数学 > 题目详情

【题目】如图,抛物线轴交于A,B两点(点B在点A的左侧),与y轴交于点C,顶点为D,其对称轴与轴交于点E,联接AD,OD.

(1)求顶点D的坐标(用含的式子表示);

(2)若OD⊥AD,求该抛物线的函数表达式;

(3)在(2)的条件下,设动点P在对称轴左侧该抛物线上,PA与对称轴交于点M,若△AME与△OAD相似,求点P的坐标.

【答案】(1)(4,-4m)(2)(3)(0,)或(1,

【解析】分析:(1)、将已知的二次函数进行配方,从而得出顶点坐标;(2)、将二次函数转化为交点式,从而得出点A和点B的坐标,根据勾股定理以及OD⊥AD得出等量关系,求出m的值;(3)、过点P作PH⊥x轴于点H,则△APH∽△AME,首先设出点P的坐标,根据△APH∽△AME∽△AOD和△APH∽△AME∽△OAD时分别得出答案.

详解:(1)∵, ∴顶点D的坐标为(4,-4m).

(2)∵

∴点A(6,0),点B(2,0),则OA=6, ∵抛物线的对称轴为x=4,∴点E(4,0),

则OE=4,AE=2, 又DE=4m,

∴由勾股定理得:

又OD⊥AD,∴, 则,解得:

∵m>0,∴抛物线的函数表达式.

(3)如图,过点P作PH⊥x轴于点H,则△APH∽△AME,

在Rt△OAD中,, 设点P的坐标为

当△APH∽△AME∽△AOD时,∵

,即

解得:x=0,x=6(舍去),∴点P的坐标为

②△APH∽△AME∽△OAD时,∵, ∴,即

解得:x=1,x=6(舍去),∴点P的坐标为

综上所述,点P的坐标为.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】小明研究二次函数为常数)性质时有如下结论:①该二次函数图象的顶点始终在平行于x轴的直线上;②该二次函数图象的顶点与x轴的两个交点构成等腰直角三角形;③当时,yx的增大而增大,则m的取值范围为;④点与点在函数图象上,若,则.其中正确结论的个数为(

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系中,一次函数的图象与正比例函数的图象交于点,一次函数的图象为,且能围成三角形,则在下列四个数中,的值能取的是(  )

A. 2B. 1C. 2D. 3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD的边长AD=3,AB=2,E为AB的中点,F在边BC上,且BF=2FC,AF分别与DE、DB相交于点M,N,则MN的长为( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某地区教育部门为了解初中数学课堂中学生参与情况,并按“主动质疑、独立思考、专注听讲、讲解题目”四个项目进行评价.检测小组随机抽查部分学校若干名学生,并将抽查学生的课堂参与情况绘制成如图所示的扇形统计图和条形统计图(均不完整).请根据统计图中的信息解答下列问题:

(1)本次抽查的样本容量是

(2)在扇形统计图中,“主动质疑”对应的圆心角为 度;

(3)将条形统计图补充完整;

(4)如果该地区初中学生共有60000名,那么在课堂中能独立思考的学生约有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校组织员工去公园划船,报名人数不足50人,在安排乘船时发现,每只船坐6人,剩下18人无船可乘;每只船坐10人,那么其余的船坐满后,有一只船不空也不满,参加划船的员工共有(  )

A.48B.45C.44D.42

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点分别是四边形的中点.则下列说法:①若,则四边形为矩形;②若,则四边形为菱形;③若四边形是平行四边形,则互相平分;④若四边形是正方形,则互相垂直且相等.其中正确的个数是(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=BCDAC中点,BE平分∠ABDAC于点E,点OAB上一点,⊙OBE两点,交BD于点G,交AB于点F

1)判断直线AC⊙O的位置关系,并说明理由;

2)当BD=6AB=10时,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明从家出发沿滨江路到外滩公园徒步锻炼,到外滩公园后立即沿原路返回,小明离开家的路程s(单位:千米)与走步时间t(单位:小时)之间的函数关系如图所示,其中从家到外滩公园的平均速度是4千米/时,根据图形提供的信息,解答下列问题:

(1)求图中的a值;

(2)若在距离小明家5千米处有一个地点C,小明从第一层经过点C到第二层经过点C,所用时间为1.75小时,求小明返回过程中,s与t的函数解析式,不必写出自变量的取值范围;

(3)在(2)的条件下,求小明从出发到回到家所用的时间.

查看答案和解析>>

同步练习册答案