精英家教网 > 初中数学 > 题目详情
如图,在等边△ABC中,线段AM为BC边上的中线.动点D在直线AM上时,以CD为一边且在CD的下精英家教网方作等边△CDE,连接BE.
(1)填空:当点D运动到点M时,∠ACE=
 
度;
(2)当点D在线段AM上(点D不运动到点A)时,求证:△ADC≌△BEC;
(3)若AB=8,以点C为圆心,以5为半径作⊙C与直线BE相交于点P、Q两点,在点D运动的过程中(点D与点A重合除外),试求PQ的长.
分析:(1)三角形内角和是180°,等边三角形的内角都相等,所以,其中一个内角的度数是180°÷3,结合图形可求得∠ACB=∠DCE=60°,从而可得∠ACE的度数;
(2)根据等边三角形的性质,利用SAS求证△ADC≌△BEC;
(3)①当点D在线段AM上(不与点A重合)时,作Rt△CBH,在直角三角形中,利用勾股定理求得;②当点D在线段AM的延长线上时,求证△ACD≌△BCE,然后求值;③当点D在线段MA的延长线上时,求证△ACD≌△BCE后求值.
解答:(1)解:120;

(2)证明:∵△ABC与△DEC都是等边三角形
∴AC=BC,CD=CE,∠ACB=∠DCE=60°
∴∠ACD+∠DCB=∠DCB+∠BCE
∴∠ACD=∠BCE
∴△ACD≌△BCE(SAS)

(3)解:①当点D在线段AM上(不与点A重合)时(图1),
精英家教网
由(2)可知△ACD≌△BCE,
则∠CBE=∠CAD=30°,作CH⊥BE于点H,
则PQ=2HQ,连接CQ,则CQ=5.
在Rt△CBH中,∠CBH=30°,BC=AB=8,则CH=
1
2
BC=4

在Rt△CHQ中,由勾股定理得:HQ=
CQ2-CH2
=
52-42
=3

则PQ=2HQ=6
②当点D在线段AM的延长线上时(图2),精英家教网
∵△ABC与△DEC都是等边三角形
∴AC=BC,CD=CE,∠ACB=∠DCE=60°
∴∠ACB+∠DCB=∠DCB+∠DCE
∴∠ACD=∠BCE
∴△ACD≌△BCE(SAS)
∴∠CEB=∠CDA=30°
同理可得:PQ=6.
③当点D在线段MA的延长线上时(图3),
∵△ABC与△DEC都是等边三角形
∴AC=BC,CD=CE,∠ACB=∠DCE=60°
∴∠ACD+∠ACE=∠BCE+∠ACE=60°
∴∠ACD=∠BCE
∴△ACD≌△BCE(SAS)
∴∠CBE=∠CAD
∵∠CAM=30°
∴∠CBE=∠CAD=150°
∴∠CBQ=30°
同理可得:PQ=6
综上所述,PQ的长是6.
点评:本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA无法证明三角形全等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

16、如图,在等边△ABC的边BC上任取一点D,作∠ADE=60°,DE交∠C的外角平分线于E,则△ADE是
等边
三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在等边△ABC中,D为BC边上一点,E为AC边上一点,且∠ADE=60°,BD=3,CE=2,则△ABC的面积为(  )
A、81
3
B、
81
3
2
C、
81
3
4
D、
81
3
8

查看答案和解析>>

科目:初中数学 来源: 题型:

21、如图,在等边△ABC中,AD是∠BAC的平分线,点E在AC边上,且∠EDC=15°.
(1)试说明直线AD是线段BC的垂直平分线;
(2)△ADE是什么三角形?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在等边△ABC中,D是AC的中点,延长BC到点E,使CE=CD,AB=10cm.
(1)求BE的长;
(2)△BDE是什么三角形,为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在等边△ABC中,BF是高,D是BF上一点,且OF=AF,作OE⊥BF,垂足为D,且OE=OB,连AE、AO、BE,求证:
(1)AB=AE;
(2)AE⊥BC; 
(3)AO⊥BE.

查看答案和解析>>

同步练习册答案