精英家教网 > 初中数学 > 题目详情
如图,△ACB和△ECD都是等腰直角三角形,A,C,D三点在同一直线上,连接BD,AE,并延长A
精英家教网
E交BD于F.
(1)求证:△ACE≌△BCD;
(2)直线AE与BD互相垂直吗?请证明你的结论.

精英家教网
(1)证明:∵△ACB和△ECD都是等腰直角三角形,
∴AC=BC,CE=CD,∠ACE=∠BCD=90°,
在△ACE和△BCD,
AC=BC
∠ACE=∠BCD
CE=CD

∴△ACE≌△BCD(SAS);

(2)直线AE与BD互相垂直,理由为:
证明:∵△ACE≌△BCD,
∴∠EAC=∠DBC,
又∵∠DBC+∠CDB=90°,
∴∠EAC+∠CDB=90°,
∴∠AFD=90°,
∴AF⊥BD,
即直线AE与BD互相垂直.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

21、如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点,求证:
(1)△ACE≌△BCD;
(2)AD2+DB2=DE2

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,△ACB和△ECD都是等腰直角三角形,A,C,D三点在同一直线上,连接BD,AE,并延长AE交BD于F.
(1)求证:△ACE≌△BCD;
(2)直线AE与BD互相垂直吗?请证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

16、如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.
求证:AE=BD.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ACB和△ECD中,AC=BC,CE=CD,BC⊥AD,A、C、D三点在同一直线上,连接BD、AE,并延长交BD于F.
(1)求证:△ACE≌△BCD;
(2)直线AF与BD有怎样的位置关系?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ACB和△ECD均为等腰直角三角形,∠ACB=∠ECD=90°,D在AB上.
(1)求证:△ACE≌△BCD;
(2)若AD=1,BD=2,求ED的长.

查看答案和解析>>

同步练习册答案