分析 (1)根据平行四边形平行四边形的性质得到AB∥CD AB=CD,从而得到∠ABE=∠CDF,然后利用SAS证得两三角形全等即可;
(2)利用(1)中的全等三角形的对应角相等推知∠AEB=∠DFC,则等角的补角相等,即∠AEF=∠CFE,所以AE∥FC.根据“有一组对边平行且相等”证得结论.
解答 证明(1)∵四边形ABCD是平行四边形,
∴AB∥CD AB=CD,
∴∠ABE=∠CDF,
∵BE=DF,
∴△ABE≌△CDF (SAS);
(2)证明:∵由(1)知,△ABE≌△CDF,
∴BE=DF,∠AEB=∠DFC,
∴∠AEF=∠CFE,
∴AE∥FC,
∴四边形AECF是平行四边形.
点评 本题考查了全等三角形的判定与性质,平行四边形的判定与性质.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.
科目:初中数学 来源: 题型:选择题
A. | A′(4,-4) | B. | B′(-1,2) | C. | A″(-4,-4) | D. | C″(-2,-1) |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\sqrt{5}$,$\sqrt{12}$,$\sqrt{13}$ | B. | 1,$\sqrt{2}$,$\sqrt{3}$ | C. | 3,4,5 | D. | 6,8,10 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com