精英家教网 > 初中数学 > 题目详情
19.如图,平行四边形ABCD中,点E、F在对角线BD上,且BE=DF.求证:
(1)△ABE≌△CDF;
(2)四边形AECF是平行四边形.

分析 (1)根据平行四边形平行四边形的性质得到AB∥CD  AB=CD,从而得到∠ABE=∠CDF,然后利用SAS证得两三角形全等即可;
(2)利用(1)中的全等三角形的对应角相等推知∠AEB=∠DFC,则等角的补角相等,即∠AEF=∠CFE,所以AE∥FC.根据“有一组对边平行且相等”证得结论.

解答 证明(1)∵四边形ABCD是平行四边形,
∴AB∥CD  AB=CD,
∴∠ABE=∠CDF,
∵BE=DF,
∴△ABE≌△CDF  (SAS);

(2)证明:∵由(1)知,△ABE≌△CDF,
∴BE=DF,∠AEB=∠DFC,
∴∠AEF=∠CFE,
∴AE∥FC,
∴四边形AECF是平行四边形.

点评 本题考查了全等三角形的判定与性质,平行四边形的判定与性质.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

17.如图,△ABC顶点的坐标分别是A(4,4),B(1,2),C(3,2),现将△ABC绕原点O逆时针方向旋转90°得到△A′B′C′,再将△A′B′C′向下平移4个单位长度得到△A″B″C″,则下列点的坐标正确的是(  )
A.A′(4,-4)B.B′(-1,2)C.A″(-4,-4)D.C″(-2,-1)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,AB为圆O的直径,点C、E在圆上,且点E是弧BC的中点,OE交弦BC于点D,点F在OE的延长线上,且∠BCF=∠BAC,BC=8,DE=2.
(1)求证:CF是⊙O的切线;
(2)求⊙O的半径;
(3)求CF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.如图,一次函数y=kx+b的图象与正比例函数y=2x的图象平行且经过点(-1,3),则b的值是5.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.下列各组数中,不能构成直角三角形的是(  )
A.$\sqrt{5}$,$\sqrt{12}$,$\sqrt{13}$B.1,$\sqrt{2}$,$\sqrt{3}$C.3,4,5D.6,8,10

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点四边形ABCD(顶点是网格线的交点)和格点O.
(1)把四边形ABCD平移,使得顶点C与O重合,画出平移后得到的四边形A2B1C1D1
(2)把四边形ABCD绕O点顺时针旋转90°,画出旋转后得到的四边形A2B2C2D2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图是用4个全等的长方形拼成一个“回形”正方形.
(1)图中阴影部分面积用不同的代数式表示,可得一个等式,这个等式是(a+b)2-(a-b)2=4ab.
(2)若(2x-y)2=9,(2x+y)2=169,求xy的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.根据要求,回答以下问题:
(1)如图1,正方形ABCD中,对角线AC、BD交于点O,点E是BO上的一点,BG垂直AE于F,交AC于点G.请你直接写出AE、BG以及OE、OG的大小关系是:AE=BG,OE=OG.
(2)如图2,菱形ABCD中,对角线AC、BD交于点O,点E是BO上的一点,BG垂直AE于F,交AC于点G,且AC=6,BD=8,请你求出AE、BG的数量关系.
(3)如图3,?ABCD中,对角线AC、BD交于点O,AC=8,BD=24,∠AOB=60°,点E是BO上的一点,OE=1,点G在对角线AC所在的直线上,当OG=3或9时,AE:BG=1:3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,在?ABCD中,对角线AC与BD相交于点O,过点O作EF⊥AC,EF与AB的延长线交于点E,与CD的延长线交于点F.
求证:四边形AECF是菱形.

查看答案和解析>>

同步练习册答案