【题目】某学校组织七年级学生进行“垃圾分类”知识测试,现随机抽取部分学生的成绩进行统计,并绘制如下频数分布表以及频数分布直方图.
分数档 | 分数段/分 | 频数 | 频率 |
A | 90<x≤100 | a | 0.12 |
B | 80<x≤90 | b | 0.18 |
C | 70<x≤80 | 20 | c |
D | 60<x≤70 | 15 | d |
请根据以上信息,解答下列问题:
(1)已知A,B档的学生人数之和等于D档学生人数,求被抽取的学生人数,并把频数分布直方图补充完整.
(2)该校七年级共有200名学生参加测试,请估计七年级成绩在C档的学生人数.
(3)你能确定被抽取的这些学生的成绩的众数在哪一档吗?请说明理由.
【答案】(1)被抽取的学生有 50(名);见解析;(2)七年级成绩在C档的学生有80人;(3)众数在C档,理由见解析
【解析】
(1)根据A,B档的学生人数之和等于D档学生人数和A,B档的频率可以求得本次调查的学生人数,然后再求出A档和B档的人数即可将频数分布直方图补充完整;
(2)根据频数分布表中的数据可以求得七年级成绩在C档的学生人数;
(3)根据题意和频数分布表中的数据可以求得众数在哪一档,本题得以解决.
(1)根据A,B档的学生人数之和等于D档学生人数知:A,B档的学生人数之和为15(名),
∴被抽取的学生有:15÷(0.12+0.18)=50(名),
B档人数为:50×0.18=9,
A档人数为:50×0.12=6,
补全的频数分布直方图如图所示;
(2)200×=80(人),
即七年级成绩在C档的学生有80人;
(3)被抽取的这些学生的成绩的众数在C档,
理由:∵A档有6人,B档有9人,C档有20人,D档有15人,
∴众数在C档.
科目:初中数学 来源: 题型:
【题目】对于平面直角坐标系中的点,将它的纵坐标与横坐标的比称为点的“理想值”,记作.如的“理想值”.
(1)①若点在直线上,则点的“理想值”等于_______;
②如图,,的半径为1.若点在上,则点的“理想值”的取值范围是_______.
(2)点在直线上,的半径为1,点在上运动时都有,求点的横坐标的取值范围;
(3),是以为半径的上任意一点,当时,画出满足条件的最大圆,并直接写出相应的半径的值.(要求画图位置准确,但不必尺规作图)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,O为坐标原点,△AOB是等腰直角三角形,∠AOB=90°,点A(2,1).
(1)求点B的坐标;
(2)求经过A、O、B三点的抛物线的函数表达式;
(3)在(2)所求的抛物线上,是否存在一点P,使四边形ABOP的面积最大?若存在,求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A的坐标是(10,0),点B的坐标为(8,0),点C,D在以OA为直径的半圆M上,且四边形OCDB是平行四边形,则点C的坐标为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,以Rt△ABC的直角边AB为直径作⊙O交斜边AC于点D,过圆心O作OE∥AC,交BC于点E,连接DE.
(1)判断DE与⊙O的位置关系并说明理由;
(2)求证:2DE2=CDOE;
(3)若tanC=,DE=,求AD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,Rt△OAB的顶点A在x轴的正半轴上,顶点B的坐标为(3,),点C的坐标为(1,0),点P为斜边OB上的一动点,则PA+PC的最小值_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,矩形OABC的顶点B的坐标为(4,2),直线y=﹣x+与边AB,BC分别相交于点M,N,函数y=(x>0)的图象过点M.
(1)试说明点N也在函数y=(x>0)的图象上;
(2)将直线MN沿y轴的负方向平移得到直线M′N′,当直线M′N′与函数y═(x>0)的图象仅有一个交点时,求直线M'N′的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知的三个顶点坐标分别是,,.
(1)请作出绕点逆时针旋转的;
(2)以点为位似中心,将扩大为原来的2倍,得到,请在轴的左侧画出;
(3)请直接写出的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com