精英家教网 > 初中数学 > 题目详情
烟花厂为成都春节特别设计制作一种新型礼炮,这种礼炮的升空高度h(m)与飞行时间t(s)的关系式是h=-
3
2
t2+12t+30
,若这种礼炮在点火升空到最高点引爆,则从点火升空到引爆需要的时间为(  )
A.3sB.4sC.5sD.6s
∵礼炮在点火升空到最高点引爆,
∴t=-
b
2a
=-
12
2×(-
3
2
)
=4s.
故选B.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,抛物线的顶点为A(2,1),且经过原点O,与x轴的另一个交点为B.
(1)求抛物线的解析式;
(2)在抛物线上求点M,使△MOB的面积是△AOB面积的3倍;
(3)连接OA,AB,在x轴下方的抛物线上是否存在点N,使△OBN与△OAB相似?若存在,求出N点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线y=x+3与坐标轴分别交于A,B两点,抛物线y=ax2+bx-3a经过点A,B,顶点为C,连接CB并延长交x轴于点E,点D与点B关于抛物线的对称轴MN对称.
(1)求抛物线的解析式及顶点C的坐标;
(2)求证:四边形ABCD是直角梯形.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=ax2+bx+c(a≠0)经过A(-2,-3)、B(3,2)两点,且与x轴相交于M、N两点,当以线段MN为直径的圆的面积最小时,求M、N两点的坐标和四边形AMBN的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图:正方形ABCO的边长为3,过A(0,3)点作直线AD交x轴于D点,且D点的坐标为(4,0),线段AD上有一动点,以每秒一个单位长度的速度移动.
(1)求直线AD的解析式;
(2)若动点从A点开始沿AD方向运动2.5秒时到达的位置为点P,求经过B、O、P三点的抛物线的解析式;
(3)若动点从A点开始沿AD方向运动到达的位置为点P1,过P1作P1E⊥x轴,垂足为E,设四边形BCEP1的面积为S,请问S是否有最大值?若有,请求出P点坐标和S的最大值;若没有,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系中,二次函数y=ax2+bx+2的图象与x轴交于A(-3,0),B(1,0)两点,与y轴交于点C.
(1)求这个二次函数的关系解析式;
(2)点P是直线AC上方的抛物线上一动点,是否存在点P,使△ACP的面积最大?若存在,求出点P的坐标;若不存在,说明理由;
(3)在平面直角坐标系中,是否存在点Q,使△BCQ是以BC为腰的等腰直角三角形?若存在,直接写出点Q的坐标;若不存在,说明理由;

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

欢欢家想利用房屋侧面的一面墙,再砌三面墙,围成一个矩形猪圈(如图),一面墙的中间留出1米宽的进出门(门使用另外的材料).现备有足够砌11米长的围墙的材料,设猪圈与已有墙面垂直的墙的长度为x米,猪圈面积为y平方米.
(1)写出y与x之间的函数关系式.
(2)要使猪圈面积为16平方米,如何设计三面围墙的长度.
(3)能否使猪圈面积为20平方米?说明理由.
(4)你能求出猪圈面积的最大值吗?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某汽车制造公司计划生产A、B、C三种型号的汽车共80辆.并且公司在设计上要求,A、C两种型号之间按如图所示的函数关系生产.该公司投入资金不少于1212万元,但不超过1224万元,且所有资金全部用于生产这三种型号的汽车,三种型号的汽车生产成本和售价如下表:
ABC
成本(万元/辆)121518
售价(万元/辆)141822
设A种型号的汽车生产x辆;
(1)设C种型号的汽车生产y辆,求出y与x的函数关系式;
(2)该公司对这三种型号汽车有哪几种生产方案?
(3)设该公司卖车获得的利润W万元,求公司如何生产获得利润最大?
(4)根据市场调查,每辆A、B型号汽车的售价不会改变,每辆C型号汽车在不亏本的情况下售价将会降价a万元(a>0),且所生产的三种型号汽车可全部售出,该公司又将如何生产获得利润最大?(注:利润=售价-成本)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某工厂生产一种合金薄板(其厚度忽略不计),这些薄板的形状均为正方形,边长在(单位:cm)在5~50之间.每张薄板的成本价(单位:元)与它的面积(单位:cm2)成正比例,每张薄板的出厂价(单位:元)有基础价和浮动价两部分组成,其中基础价与薄板的大小无关,是固定不变的.浮动价与薄板的边长成正比例.在营销过程中得到了表格中的数据.
薄板的边长(cm)2030
出厂价(元/张)5070
(1)求一张薄板的出厂价与边长之间满足的函数关系式;
(2)已知出厂一张边长为40cm的薄板,获得的利润为26元(利润=出厂价-成本价),
①求一张薄板的利润与边长之间满足的函数关系式.
②当边长为多少时,出厂一张薄板所获得的利润最大?最大利润是多少?
参考公式:抛物线:y=ax2+bx+c(a≠0)的顶点坐标为(-
b
2a
4ac-b2
4a

查看答案和解析>>

同步练习册答案