精英家教网 > 初中数学 > 题目详情
将两个用钢丝设计成的能够完全重合的直角三角形模型ABC和直角三角形DEF按如图所示的位置摆放,使点B、F、C、D在同一条直线上,且AB和DE、EF分别相交于点P、M,AC和DE相交于点N.
(1)试判断线段AB和DE的位置关系,并说明理由;
(2)若PD=AC,线段PE和BF有什么数量关系,请说明你的理由.

【答案】分析:(1)因为两三角形能够完全重合,所以∠A等于∠D,而∠ANP与∠DNC是对顶角,因此∠APN=∠DCN=90°,垂直.
(2)先证△ABC≌△DPB≌△DEF,就可以得到DE等于BD、DP等于DF,所以PE和BF相等.
解答:解:(1)二者的位置关系是:AB⊥DE.
理由:根据题意△ABC≌△DEF,
∴∠A=∠D.
∵∠ANP=∠DNC(对顶角相等),
∴∠APN=∠DCN=90°.
∴AB⊥DE.

(2)∵∠ACB=∠DPB=90°,PD=AC,∠A=∠D,
∴△ABC≌△DPB,
又△ABC≌△DEF,
∴△ABC≌△DPB≌△DEF.
∴BD=DE,DF=DP.
∵PE=DE-DP,BF=BD-DF,
∴PE=BF.
点评:本题主要考查了全等三角形的性质和判定;找着相应的三角形全等是解决本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

21、将两个用钢丝设计成的能够完全重合的直角三角形模型ABC和直角三角形DEF按如图所示的位置摆放,使点B、F、C、D在同一条直线上,且AB和DE、EF分别相交于点P、M,AC和DE相交于点N.
(1)试判断线段AB和DE的位置关系,并说明理由;
(2)若PD=AC,线段PE和BF有什么数量关系,请说明你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

将两个用钢丝设计成的能够完全重合的直角三角形模型ABC和直角三角形DEF按如图所示的位置摆放,使点B、F、C、D在同一条直线上,且AB和DE、EF分别相交于点P、M,AC和DE相交于点N.
(1)试判断线段AB和DE的位置关系,并说明理由;
(2)若PD=AC,线段PE和BF有什么数量关系,请说明你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

将两个用钢丝设计成的能够完全重合的直角三角形模型和直角三角形按如图所示的位置摆放,使点B、F、C、D在同一条直线上,且分别相交于点相交于点

(1)试判断线段的位置关系,并说明理由;

(2)若=,线段有什么数量关系,请说明你的理由.

查看答案和解析>>

同步练习册答案