分析 首先构造直角三角形△AEM,利用tan22°=$\frac{AM}{ME}$,求出即可商场AB的高度.
解答 解:过点E作EM⊥AB,垂足为M.
设AB为x(m).
∵Rt△ABF中,∠AFB=45°,
∴BF=AB=x,
∴BC=BF+FC=x+13;
∵在Rt△AEM中,∠AEM=22°,
AM=AB-BM=AB-CE=x-2,
∴tan22°=$\frac{AM}{ME}$,
$\frac{x-2}{x+13}$=$\frac{2}{5}$,
解得:x=12.
答:商场AB的高度为12m.
点评 此题主要考查了解直角三角形的应用,根据已知得出tan22°=$\frac{AM}{ME}$是解题关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 1个 | B. | 2个 | C. | 3个 | D. | 5个 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com