精英家教网 > 初中数学 > 题目详情

若一抛物线y=ax2与四条直线x=1、x=2、y=1、y=2围成的正方形有公共点,则a的取值范围是

[  ]
A.

≤a≤1

B.

≤a≤2

C.

≤a≤1

D.

≤a≤2

练习册系列答案
相关习题

科目:初中数学 来源:新教材完全解读 九年级数学 (下册) (配华东师大版新课标) 华东师大版新课标 题型:013

若一抛物线y=ax2与四条直线x=1,x=2,y=1,y=2围成的正方形有公共点,则a的取值范围是

[  ]

A.

B.

C.

D.

查看答案和解析>>

科目:初中数学 来源:新教材完全解读 九年级数学 下册(配北师大版新课标) 北师大版新课标 题型:013

若一抛物线y=ax2与四条直线x=1,x=2,y=1,y=2围成的正方形有公共点,则a的取值范围是

[  ]
A.

≤a≤1

B.≤a≤2

C.≤a≤1

D.

≤a≤2

查看答案和解析>>

科目:初中数学 来源:101网校同步练习 初三数学 北师大(新课标2001/3年初审) 北师大版 题型:059

某校研究性学习小组在研究有关二次函数及其图象性质的问题时,发现了两个重要的结论:一是发现抛物线y=ax2+2x+3(a≠0),当实数a变化时,它的顶点都在某条直线上;二是发现当实数a变化时,若把抛物线y=ax2+2x+3的顶点的横坐标减少,纵坐标增加,得到A点的坐标;若把顶点的横坐标增加,纵坐标增加,得到B点的坐标,则A、B两点一定仍在抛物线y=ax2+2x+3上.

(1)请你协助探求出当实数a变化时,抛物线y=ax2+2x+3的顶点所在直线的解析式;

(2)问题(1)中的直线上有一个点不是该抛物线的顶点,你能找出它来吗?并说明理由;

(3)在他们第二个发现的启发下,运用“一般——特殊——一般”的思想,你还能发现什么?你能用数学语言将你的猜想表达出来吗?你的猜想能成立吗?若能成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2007年苏州地区数学学科初三上期末试卷-华师版 题型:059

某校研究性学习小组在研究有关二次函数及其图象性质的问题时,发现了两个重要的结论:一是发现抛物线y=ax2+2x+3(a≠0),当实数a变化时,它的顶点都在某条直线上;二是发现当实数a变化时,若把抛物线y=ax2+2x+3的顶点的横坐标减少,纵坐标增加,得到A点的坐标;若把顶点的横坐标增加,纵坐标增加,得到B点的坐标,则AB两点一定仍在抛物线y=ax2+2x+3上.

(1)请你协助探求实数a变化时,抛物线y=ax2+2x+3的顶点所在直线的解析式;

(2)问题(1)中的直线上有一个点不是该抛物线的顶点,你能找出它来吗?并说明理由;

(3)在他们第二个发现的启发下,运用“一般——特殊——一般”的思想,你还能发现什么?你能用数学语言将你的猜想表述出来吗?你的猜想成立吗?若能成立,请说明理由.

查看答案和解析>>

同步练习册答案