精英家教网 > 初中数学 > 题目详情

Rt△ABC中,∠ACB=90°,O为AB上一点,以O为圆心、OB为半径的⊙O与AC相切于点D,交BC于点E,若CD=2,BE=4,则⊙O半径为


  1. A.
    2数学公式
  2. B.
    3
  3. C.
    4
  4. D.
    2数学公式
A
分析:连接OD,作OF⊥BE于点F,易证四边形ODCF是矩形,则OF=CD,在直角△OBF中,利用勾股定理即可求得半径OB的长.
解答:解:连接OD,作OF⊥BE于点F.则BF=BE=2,
∵AC是圆的切线,
∴OD⊥AC,
∴∠ODC=∠C=∠OFC=90°,
∴四边形ODCF是矩形,
∴OF=CD=2,
∴在直角△OBF中,OB=OF=2
故选A.
点评:本题考查了垂径定理,以及切线的性质定理,正确作出辅助线,求得边心距OF的长是关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠ACB=90°,∠BAC=60°,DE垂直平分BC,垂足为D,交AB于点E.又点F在DE的精英家教网延长线上,且AF=CE.求证:四边形ACEF是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在Rt△ABC中,∠BAC=90°,点D、E、F分别是三边的中点,且CF=3cm,则DE=
 
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,Rt△ABC中,AC⊥BC,CD⊥AB于D,AC=8,BC=6,则AD=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在等腰Rt△ABC中,∠C=90°,正方形DEFG的顶点D在边AC上,点E、F在边AB上,精英家教网点G在边BC上.
(1)求证:AE=BF;
(2)若BC=
2
cm,求正方形DEFG的边长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,Rt△ABC中,∠C=90°,D为AB的中点,DE⊥AB,AB=20,AC=12,则四边形ADEC的面积为
 

查看答案和解析>>

同步练习册答案