精英家教网 > 初中数学 > 题目详情
抛物线y=-x2+2bx-(2b-1)(b为常数)与x轴相交于A(x1,0),B(x2,0)(x2>x1>0)两点,设OA•OB=3(O为坐标系原点).
(1)求抛物线的解析式;
(2)设抛物线的顶点为C,抛物线的对称轴交x轴于点D,求证:点D是△ABC的外心;
(3)在抛物线上是否存在点P,使S△ABP=1?若存在,求出点P的坐标;若不存在,请说明理由.
(1)由题意,得x1•x2=2b-1.(1分)
∵OA•OB=3,OA=x1OB=x2
∴x1•x2=3.(2分)
∴2b-1=3.
∴b=2.(3分)
∴所求的抛物线解析式是:y=-x2+4x-3.(4分)

(2)证明:如图,
∵y=-x2+4x-3=-(x-2)2+1,
∴顶点C(2,1),D(2,0),CD=1.(5分)
令y=0,得-x2+4x-3=0.
解得x1=1,x2=3.(6分)
∴A(1,0),B(3,0),AD=DB=1.(7分)
∴AD=DC=DB.
∴D为△ABC的外心.(8分)

(3)解法一:设抛物线存在点P(x,y),使S△ABP=1.
由(2)可求得AB=3-1=2.
∴S△ABP=
1
2
AB•|y|=
1
2
×2•|y|=1.(9分)
∴y=±1.
当y=1时,-x2+4x-3=1,解得x1=x2=2.(10分)
当y=-1时,-x2+4x-3=-1,解得x=2±
2
.(11分)
∴存在点P,使S△ABP=1.
点P的坐标是(2,1)或(2+
2
,-1)或
(2-
2
,-1).(12分)
解法二:由(2)得S△ABC=
1
2
AB•CD=
1
2
×2×1=1.(9分)
∴顶点C(2,1)是符合题意的一个点.(10分)
另一方面,直线y=-1上任一点M,能使S△AMB=1,
把直线y=-1代入抛物线解析式,得-x2+4x-3=-1.
解得x=2±
2
.(11分)
∴存在点P,使S△ABP=1.
点P的坐标是(2,1)或(2+
2
,-1)或(2-
2
,-1).(12分)
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=-x2+x+c与x轴交于A,B两点,与y轴交于点C,且点B的坐标为B(-2,0).
(1)求抛物线解析式;
(2)点P在抛物线上,且点P的横坐标为x(-2<x<0),设△PBC的面积为S,求S与x之间的函数关系式,并求S的最大值;
(3)点M(m,n)是直线AC上的动点.设m=2-a,如果在两个实数m与n之间(不包括m和n)有且只有一个整数,求实数a的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知关于x的一元二次方程
1
2
x2+(m-2)x+2m-6=0

(1)求证:无论m取任何实数,方程都有两个实数根;
(2)当m<3时,关于x的二次函数y=
1
2
x2+(m-2)x+2m-6
的图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,且2AB=3OC,求m的值;
(3)在(2)的条件下,过点C作直线lx轴,将二次函数图象在y轴左侧的部分沿直线l翻折,二次函数图象的其余部分保持不变,得到一个新的图象,记为G.请你结合图象回答:当直线y=
1
3
x+b
与图象G只有一个公共点时,b的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,AO=8,AB=AC,sin∠ABC=
4
5
.CD与y轴交于点E,且S△COE=S△ADE.已知经过B,C,E三点的图象是一条抛物线,求这条抛物线对应的二次函数的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知过点(
3
2
,-
7
4
)的直线y=kx+b与x轴、y轴的交点分别为A、B,且经过第一、三、四象限,它与抛物线y=x2-4x+3只有一个公共点.
(1)求k的值;
(2)设抛物线的顶点为P,求点P到直线AB的距离d.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,四边形ABCD是梯形,sin∠OAD=tan∠OBC=
2
3
,PC是抛物线的对称轴,且P(3,-3).
(1)求抛物线的函数表达式;
(2)求点D的坐标;
(3)求直线AD的函数表达式;
(4)PD与AD垂直吗?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=ax2-5ax+4经过△ABC的三个顶点,已知BCx轴,点A在x轴的负半轴上,点C在y轴上,且AC=BC.
(1)求抛物线的对称轴;
(2)求A点坐标并求抛物线的解析式;
(3)若点P在x轴下方且在抛物线对称轴上的动点,是否存在△PAB是等腰三角形?若存在,求出所有符合条件的点P坐标;不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中有一直角梯形OABC,∠AOC=90°,ABOC,OC在x轴上,过A、B、C三点的抛物线表达式为y=-
1
18
x2+
4
9
x+10

(1)求A、B、C三点的坐标;
(2)如果在梯形OABC内有一矩形MNPO,使M在y轴上,N在BC边上,P在OC边上,当MN为多少时,矩形MNPO的面积最大?最大面积是多少?
(3)若用一条直线将梯形OABC分为面积相等的两部分,试说明你的分法.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,抛物线y=x2-2x-3交x轴于A、B,交y轴于C,若在此抛物线上存在P,使△PAC的内心在x轴上,则点P的坐标为______.

查看答案和解析>>

同步练习册答案