精英家教网 > 初中数学 > 题目详情
阅读理解:
如图1,在四边形ABCD的边AB上任取一点E(点E不与点A、点B重合),分别连接ED,EC,可以把四边形ABCD分成三个三角形,如果其中有两个三角形相似,我们就把E叫做四边形ABCD的边AB上的相似点;如果这三个三角形都相似,我们就把E叫做四边形ABCD的边AB上的强相似点.解决问题:
(1)如图1,∠A=∠B=∠DEC=55°,试判断点E是否是四边形ABCD的边AB上的相似点,并说明理由;
(2)如图2,在矩形ABCD中,AB=5,BC=2,且A,B,C,D四点均在正方形网格(网格中每个小正方形的边长为1)的格点(即每个小正方形的顶点)上,试在图2中画出矩形ABCD的边AB上的一个强相似点E;
拓展探究:
(3)如图3,将矩形ABCD沿CM折叠,使点D落在AB边上的点E处.若点E恰好是四边形ABCM的边AB上的一个强相似点,试探究AB和BC的数量关系.
(1)是,理由见解析;(2)作图见解析;(3).

试题分析:(1)要证明点E是四边形ABCD的AB边上的相似点,只要证明有一组三角形相似就行,很容易证明△ADE∽△BEC,所以问题得解.
(2)根据两个直角三角形相似得到强相似点的两种情况即可.
(3)因为点E是梯形ABCD的AB边上的一个强相似点,所以就有相似三角形出现,根据相似三角形的对应线段成比例,可以判断出AE和BE的数量关系,从而可求出解.
试题解析:(1)点E是四边形ABCD的边AB上的相似点.
理由:∵∠A=55°,
∴∠ADE+∠DEA=125°.
∵∠DEC=55°,
∴∠BEC+∠DEA=125°.
∴∠ADE=∠BEC.
∵∠A=∠B,
∴△ADE∽△BEC.
∴点E是四边形ABCD的AB边上的相似点.
(2)作图如下:

(3)∵点E是四边形ABCM的边AB上的一个强相似点,
∴△AEM∽△BCE∽△ECM,
∴∠BCE=∠ECM=∠AEM.
由折叠可知:△ECM≌△DCM,
∴∠ECM=∠DCM,CE=CD,
∴∠BCE=∠BCD=30°,
∴BE=CE=AB.
在Rt△BCE中,tan∠BCE==tan30°,


考点: 相似形综合题.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

已知,则          .

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

网格中每个小正方形的边长都是1.
(1)将图1中画一个格点三角形DEF,使得△DEF≌△ABC

(2)将图2中画一个格点三角形MNL,使得△MNL∽△ABC,且相似比为2:1

(3)将图3中画一个格点三角形OPQ,使得△OPQ∽△ABC,且相似比为:1

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,在⊙O中,直径AB⊥CD于点E,连接BC.

(1)线段BC、BE、AB应满足的数量关系是      
(2)若点P是优弧上一点(不与点C、A、D重合),连接BP与CD交于点G.
请完成下面四个任务:
①根据已知画出完整图形,并标出相应字母;
②在正确完成①的基础上,猜想线段BC、BG、BP应满足的数量关系是       
③证明你在②中的猜想是正确的;
④点P′恰恰是你选择的点P关于直径AB的对称点,那么按照要求画出图形后在②中的猜想仍然正确吗?    ;(填正确或者不正确,不需证明)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,某同学想测量旗杆的高度,他在某一时刻测得1米长的竹竿竖直放置时影长1.5米,在同一时刻测量旗杆的影长时,因旗杆靠近一楼房,影子不全落在地面上,有一部分落在墙上,他测得落在地面上的影长为21米,留在墙上的影高为2米,求旗杆的高度.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在同一时刻,太阳光下身高1.6m的小强的影长是1.2m,学校旗杆的影长是15m,则旗杆高为   

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在△ABC中,若DE∥BC,AD=5,BD=10,DE=4,则BC的值为(      )
A.8B.9C.10D.12

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

两个三角形周长之比为9∶5,则面积比为(  )
A.9∶5B.81∶25C.3∶D.不能确定

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在△ABC中,D、E分别是AB、AC边上的点,且DE//BC,如果DE:BC=3:5,那么AE:AC的值为(       )

A.        B.       C.      D.

查看答案和解析>>

同步练习册答案