分析 (1)根据SAS证明△BPD≌△CPQ,可得出答案;
(2)根据全等三角形应满足的条件探求边之间的关系,再根据路程=速度×时间公式,先求得BP,CQ,PC,若△BPD≌△CPQ必须有BP=CP,可得方程求解即可.
解答 解:(1)△BPD≌△CPQ,
∵D是AB的中点,
∴BD=14.
又∵BP=3×2=6,
∴CP=20-6=14,CQ=3×2=6,
∵AB=AC,
∴∠B=∠C,
在△BPD和△CPQ中,
$\left\{\begin{array}{l}{BD=CP}\\{∠B=∠C}\\{BP=CQ}\end{array}\right.$,
∴△BPD≌△CPQ.
(2)存在,设经过t秒时△BPD≌△CPQ.
依题意BP=2.5t,CQ=3.5t,PC=20-2.5t.
若△BPD≌△CPQ必须有BP=CP,即2.5t=20-2.5t,
解得t=4.
故当t=4秒时△BPD≌△CPQ.
点评 此题考查了勾股定理,全等三角形的判定,主要运用了路程=速度×时间的公式,要求熟练运用全等三角形的判定和性质.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com