精英家教网 > 初中数学 > 题目详情

【题目】已知:在RtABC中,C=90°,BC=1,AC=,点D是斜边AB的中点,点E是边AC上一点,则DE+BE的最小值为(  )

A. 2

B.

C.

D.

【答案】C

【解析】

B关于AC的对称点B',连接B′D,易求∠ABB'=60°,则AB=AB',且△ABB'为等边三角形,BE+DE=DE+EB'B'与直线AB之间的连接线段,其最小值为B'AB的距离=AC=,所以最小值为

解:作B关于AC的对称点B',连接B′D,

∵∠ACB=90°,∠BAC=30°,

∴∠ABC=60°,

∵AB=AB',

∴△ABB'为等边三角形,

∴BE+DE=DE+EB'B'与直线AB之间的连接线段,

∴最小值为B'AB的距离=AC=

故选:C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,E、F分别是边BC、CD上的点,∠EAF=45°,△ECF的周长为4,则正方形ABCD的边长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知直线上有n(n≥2的正整数)个点,每相邻两点间距离为1,从左边第1个点起跳,且同时满足以下三个条件:
①每次跳跃均尽可能最大;
②跳n次后必须回到第1个点;
③这n次跳跃将每个点全部到达,
设跳过的所有路程之和为Sn , 则S25=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC和△DEF(顶点为网格线的交点),以及过格点的直线l

(1)将△ABC向右平移两个单位长度,再向下平移两个单位长度,画出平移后的三角形.

(2)画出△DEF关于直线l对称的三角形.

(3)填空:∠C+∠E   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(1)将ABD平移,使D沿BD延长线移至C得到A′B′D′,A′B′交AC于E,AD平分BAC.

(1)猜想B′EC与A′之间的关系,并写出理由.

(2)如图将ABD平移至如图(2)所示,得到A′B′D′,请问:A′D平分B′A′C吗?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=x﹣1与反比例函数y= 的图象交于A、B两点,与x轴交于点C,已知点A的坐标为(﹣1,m).
(1)求反比例函数的解析式;
(2)若点P(n,﹣1)是反比例函数图象上一点,过点P作PE⊥x轴于点E,延长EP交直线AB于点F,求△CEF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2,求证:CD⊥AB.

证明:∵DG⊥BC,AC⊥BC(已知)

∴∠DGB=∠ACB=90°(垂直定义)

∴DG∥AC(

∴∠2=

∵∠1=∠2(已知)

∴∠1=∠ (等量代换)

∴EF∥CD(

∴∠AEF=∠

∵EF⊥AB(已知)

∴∠AEF=90°(

∴∠ADC=90°(

∴CD⊥AB(

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)填表,使上下每对xy的值是方程3x+y=5的解

x

﹣2

0.4

   

   

y

   

   

0

3

(2)写出二元一次方程3x+y=5的正整数解:   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于点H,且DH与AC交于G,则GH=(
A. cm
B. cm
C. cm
D. cm

查看答案和解析>>

同步练习册答案