精英家教网 > 初中数学 > 题目详情
4.已知点A(x1,y1)、点B(x2,y2)在反比例函数y=-$\frac{2}{x}$的图象上.如果x1<0<x2,那么y1与y2的大小关系为:y1 >y2(从“<”、“=”、“>”中选择).

分析 反比例函数y=-$\frac{2}{x}$中,当k=-2<0,双曲线在第二,四象限,根据x1<0<x2即可判断A在第二象限,B在第四象限,从而判定y1>y2

解答 解:∵k=-2<0,
∴双曲线在第二,四象限,
∵x1<0<x2
∴A在第二象限,B在第四象限,
∴y1>y2
故答案为>.

点评 本题主要考查反比例函数的图象和性质,掌握反比例函数y=$\frac{k}{x}$图象和性质是解题的关键,即当k>0时图象在第一三象限,且在每个象限内y随x的增大而减小,当k<0时图象在第二四象限内,且在每个象限内y随x的增大而增大.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

14.先化简,再求值:$\frac{{x}^{2}}{{x}^{2}-1}$÷(1+$\frac{1}{x-1}$),其中x=$\sqrt{2}-1$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图(1),A1B1和A2B2是水面上相邻的两条赛道(看成两条互相平行的线段).甲是一名游泳运动健将,乙是一名游泳爱好者,甲在赛道A1B1上从A1处出发,到达B1后,以同样的速度返回A1处,然后重复上述过程;乙在赛道A2B2上以1.5m/s的速度从B2处出发,到达A2后以相同的速度回到B2处,然后重复上述过程(不考虑每次折返时的减速和转向时间).若甲、乙两人同时出发,设离开池边B1B2的距离为y(m),运动时间为t(s),甲游动时,y(m)与t(s)的函数图象如图2所示.
(1)赛道的长度是50m,甲的速度是2m/s;当t=$\frac{100}{7}$s时,甲、乙两人第一次相遇,当t=$\frac{300}{7}$s时,甲、乙两人第二次相遇?
(2)第三次相遇时,两人距池边B1B2多少米.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.某玩具专柜要经营一种新上市的儿童玩具,进价为20元,试营销阶段发现:当销售单价是25元时,每天的销售量为250件,销售单价每上涨1元,每天的销售量就减少10件.
(1)写出专柜销售这种玩具,每天所得的销售利润W(元)与销售单价x(元)之间的函数关系式;
(2)求销售单价为多少元时,该玩具每天的销售利润最大;
(3)专柜结合上述情况,设计了A、B两种营销方案:
方案A:该玩具的销售单价高于进价且不超过30元;
方案B:每天销售量不少于10件,且每件玩具的利润至少为25元.
请比较哪种方案的最大利润更高,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.若不等式组$\left\{\begin{array}{l}{a-x>0}\\{2x-1<-3}\end{array}\right.$的解集是x<-1,则a的取值范围是 (  )
A.a>-1B.a≥-1C.a<-1D.a≤-1

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.已知扇形的弧长为8,如果该扇形的半径长为2,那么这个扇形的面积为8.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.如图,在正方形ABCD中,点E、F分别在边BC、CD上,△AEF是等边三角形,如果AB=1,那么CE的长是$\sqrt{3}$-1.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.因式分解:3ab2-27a=3a(b+3)(b-3).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.计算:(cos60°)-1÷(-1)2010+|2-$\sqrt{8}$|-$\frac{2}{\sqrt{2}+1}$×(tan30°-1)0

查看答案和解析>>

同步练习册答案