精英家教网 > 初中数学 > 题目详情
7.下列方程的变形:①由3+x=5,得x=5+3;②由7x=-4,得x=-$\frac{7}{4}$;③由$\frac{1}{2}$y=0,得y=2;④由 3=x-2,得x=-2-3.其中,正确的有(  )
A.3个B.2个C.1个D.0个

分析 分别利用等式的基本性质判断得出即可.

解答 解:①3+x=5,等式的两边减去3得x=5-3,故此选项错误;
②7x=-4,方程两边除以7得x=-$\frac{4}{7}$,故此选项错误;
③$\frac{1}{2}$y=0,方程两边乘以2得y=0,故此选项错误;
④3=x-2,等式的两边加上2得x=2+3,故此选项错误.
故选:D.

点评 此题主要考查了等式的基本性质,熟练掌握性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

16.在图1至图4中,正方形ABCD的边长为a,等腰直角三角形FAE的斜边和AD在同一直线上.
操作示例:
当AE<a时,如图1,在BA上选取适当的点G,使BG=b,连接FG和CG,裁掉△FAG和△CGB并分别拼接到△FEH和△CHD的位置,恰好构成四边形FGCH.
思考发现:
小明在操作后发现:该剪拼方法是先将△FAG绕点F逆时针旋转90°到△FEH的位置,已知EH与AD在同一直线上,连接CH.由剪拼方法可得DH=BG,从而又可将△CGB绕点C顺时针旋转90°到△CHD的位置.这样,对于剪拼得到的四边形FGCH(如图1所示),
实践探究:
(1)小明判断出四边形FGCH是正方形,请你给出判断四边形FGCH是正方形的方法.
(2)经测量,小明发现图1中BG是AE一半,请你证明小明的发现是正确的.(提示:过点F作FM⊥AH,垂足为点M);
拓展延伸:
(3)类比图1的剪拼方法,请你就图2至图4的三种情形分别画出剪拼成一个新正方形的示意图.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,在菱形ABCD中,E、F分别为边BC、CD上一点且BE=DF.
(1)求证:△ABE≌△ADF;
(2)连接EF,求证:AC垂直平分EF.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.分解因式
(1)a3-2a2+a
(2)a2(x-y)+16(y-x)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC.试猜想CE、BF的关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.一块长方形菜地,周围篱笆长320米,长方形菜地的长与宽的比是5:3,这块菜地的面积是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.如图,已知点A,B,C,D,E,F最边长为1的正六边形的顶点,在连接两点所得的所有线段中任取一条线段,取到长度为$\sqrt{3}$的线段的概率为(  )
A.$\frac{1}{4}$B.$\frac{2}{5}$C.$\frac{2}{3}$D.$\frac{5}{9}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.下列说法正确的是(  )
A.若|x|=|y|,则x=yB.若x2=y2,则x=yC.若$\sqrt{x^2}=|y|$,则x=yD.若$\root{3}{x}=\root{3}{y}$,则x=y

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,在平面直角坐标系中有Rt△ABC,已知∠CAB=90°,AB=AC,A(-2,0),B(0,1).
(1)点C的坐标是(-3,2);
(2)将△ABC沿x轴正方向平移得到△A′B′C′,且B,C两点的对应点B′,C′恰好落在反比例函数y=$\frac{k}{x}$的图象上,求该反比例函数的解析式.

查看答案和解析>>

同步练习册答案