精英家教网 > 初中数学 > 题目详情

【题目】如图已知 试说明BECF

完善下面的解答过程并填写理由或数学式

已知

AE (  )

(  )

已知

(  )

DCAB(  )

(  )

已知

(  )

BECF(  ) .

【答案】答案见解析.

【解析】试题分析:根据平行线的判定与性质,灵活判断同位角、内错角、同旁内角,逐步可求解.

试题解析:解:∵(已知)

AE BC 内错角相等,两直线平行

两直线平行,内错角相等

(已知)

等量代换

DCAB 同位角相等,两直线平行

两直线平行,同旁内角互补

(已知)

等量代换

BECF 同旁内角互补,两直线平行 ) .

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图在平面直角坐标系中菱形ABCD的顶点Ay轴上且点A坐标为(0,4),BCx轴正半轴上CB点右侧反比例函数x>0)的图象分别交边ADCDEF连结BF已知BC=kAE=CFS四边形ABFD=20,k= _________

[Failed to download image : http://192.168.0.10:8086/QBM/2019/1/17/2120855162306560/2123559773659136/STEM/85e8312ee4314e6b84d61ad733d78d14.png]

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】5个边长为1的正方形按照如图所示方式摆放,O1,O2,O3,O4,O5是正方形对角线的交点,那么阴影部分面积之和等于________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,矩形OABC在平面直角坐标系内的位置如图所示,点O为坐标原点,点A的坐标示为(10,0),点B的坐标为(10,8) .

(1)直接写出点C的坐标为:C( ____ ,_____);

(2)已知直线AC与双曲线y= (m≠0)在第一象限内有一点交点Q(5,n),

①求mn的值;

②若动点PA点出发,沿折线AO→OC→CB的路径以每秒2个单位长度的速度运动,到达B处停止,APQ的面积为S,当t取何值时,S=10.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在四边形ABCD中,∠ABC=90°,∠CAB=∠CAD=22.5°,E在AB上,且∠DCE=67.5°,DE⊥AB于E,若AE=1,线段BE的长为____________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某旅客携带x kg的行李乘飞机,登机前,旅客可选择托运或快递行李,托运费y1(元)与行李重量x kg的对应关系由如图所示的一次函数图象确定,下表列出了快递费y2(元)与行李重量x kg的对应关系

(1) 如果旅客选择托运,求可携带的免费行李的最大重量为多少kg

(2) 如果旅客选择快递,当1<x≤15时,直接写出快递费y2(元)与行李的重量x kg之间的函数关系式

(3) 某旅客携带25kg的行李,设托运m kg行李(10≤m<24,m为正整数),剩下的行李选择快递.当m为何值时,总费用y的值最小?并求出其最小值是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)如图1,若COAB,垂足为O,OE、OF分别平分AOCBOC.求EOF的度数;

(2)如图2,若AOC=BOD=80°,OE、OF分别平分AODBOC.求EOF的度数;

(3)若AOC=BOD=α,将BOD绕点O旋转,使得射线OC与射线OD的夹角为β,OE、OF分别平分AODBOC.若α+β≤180°,α>β,则EOC= .(用含α与β的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为1的小正方形组成的网格中,ABC的三个顶点均在格点上,请按要求完成下列各题:

(1)画线段ADBC且使AD=BC,连接CD;

(2)线段AC的长为_______,CD的长为______,AD的长为________;

(3)四边形ABCD的面积为________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在括号内注明说理依据.如图已知∠B=D,1=2,试猜想∠A与∠C的大小关系,并说明理由.

解:猜想∠A=C

∵∠1=2 (已知)

1=EGC   

∴∠2=EGC   

BFDE   

∴∠B=AED   

∵∠B=D   

∴∠AED=D (等量代换)

ABCD   

∴∠A=C   

查看答案和解析>>

同步练习册答案