精英家教网 > 初中数学 > 题目详情
精英家教网已知抛物线y=ax2+bx+c(a≠0)过点A(-3,0),B(1,0),C(0,3)三点
(1)求抛物线的解析式;
(2)若抛物线的顶点为P,求∠PAC正切值;
(3)若以A、P、C、M为顶点的四边形是平行四边形,求点M的坐标.
分析:(1)利用待定系数法将A(-3,0),B(1,0),C(0,3)三点代入y=ax2+bx+c即可求出;
(2)利用配方法求出二次函数的顶点坐标,进而求出PA,PC,AC,从而得出∠PAC正切值;
(3)求出直线AC的解析式,直线AP的解析式,直线PC的解析式,当AC是平行四边形的一条对角线时,当PC是平行四边形的一条对角线时,当AP是平行四边形的一条对角线时分别得出.
解答:解:(1)由题意得:
9a-3b+c=0
a+b+c=0
c=3

解得:
a=-1
b=-2
c=3

∴y=-x2-2x+3;

(2)y=-x2-2x+3=-(x+1)2+4,
∴P(-1,4),
PA=2
5
PC=
2
AC=3
2

∵PA2=PC2+AC2
∴∠PCA=90°,
tan∠PAC=
PC
AC
=
2
3
2
=
1
3


(3)∵直线AC的解析式是:y=x+3,
直线AP的解析式是:y=2x+6,
直线PC的解析式是:y=-x+3,精英家教网
当AC是平行四边形的一条对角线时:
PC∥AM,AP∥CM,
∴利用两直线平行k的值相等,即可得出:
直线MC的解析式是:y=2x+3,
直线AM的解析式是:y=-x-3,
∴M(-2,-1),
当PC是平行四边形的一条对角线时:同理可得∴M(2,7),
当AP是平行四边形的一条对角线时:∴M(-4,1),
∴M(-2,-1)或M(2,7)或M(-4,1).
点评:此题主要考查了待定系数法求二次函数解析式以及解直角三角形和平行四边形的性质等知识,(3)题中注意分类讨论的数学思想,难点在于考虑问题要全面,做到不重不漏.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c(a≠0)经过A(-2,0),B(0,-4),C(2,-4)三点,且精英家教网与x轴的另一个交点为E.
(1)求抛物线的解析式;
(2)用配方法求抛物线的顶点D的坐标和对称轴;
(3)求四边形ABDE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线y=ax2和直线y=kx的交点是P(-1,2),则a=
 
,k=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

2、已知抛物线y=ax2+bx+c的开口向下,顶点坐标为(2,-3),那么该抛物线有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知抛物线y=ax2+bx+c(其中b>0,c<0)的顶点P在x轴上,与y轴交于点Q,过坐标原点O,作OA⊥PQ,垂足为A,且OA=
2
,b+ac=3.
(1)求b的值;
(2)求抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•广州)已知抛物线y1=ax2+bx+c(a≠0,a≠c)过点A(1,0),顶点为B,且抛物线不经过第三象限.
(1)使用a、c表示b;
(2)判断点B所在象限,并说明理由;
(3)若直线y2=2x+m经过点B,且于该抛物线交于另一点C(
ca
,b+8
),求当x≥1时y1的取值范围.

查看答案和解析>>

同步练习册答案