精英家教网 > 初中数学 > 题目详情
如图,在△ABC中,∠A=68°,点I是△ABC的内心,则∠BIC的度数为______.
∵∠A=68°,
∴∠ABC+∠ACB=180°-68°=112°.
∵点I是△ABC的内心,
∴∠IBC=
1
2
∠ABC,∠ICB=
1
2
∠ACB,
∴∠IBC+∠ICB=
1
2
(∠ABC+∠ACB)=56°,
∴∠BIC=180°-(∠IBC+∠ICB)=124°.
故答案是:124°.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

△ABC外切于⊙O,切点分别为点D、E、F,∠A=60°,BC=7,⊙O的半径为
3
.求:
(1)求BF+CE的值;
(2)求△ABC的周长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图所示,在半径为r的圆内作一个内接正三角形,依次再作内切圆,那么图中最小的圆的半径是(  )
A.
1
4
r
B.
2
4
r
C.
1
2
r
D.
2
2
r

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

我们给出如下定义:三角形三条中线的交点称为三角形的重心.一个三角形有且只有一个重心.可以证明三角形的重心与顶点的距离等于它与对边中点的距离的两倍.
可以根据上述三角形重心的定义及性质知识解答下列问题:
如图,∠B的平分线BE与BC边上的中线AD互相垂直,并且BE=AD=4
(1)猜想AG与GD的数量关系,并说明理由;
(2)求△ABC的三边长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在△ABC的外接圆O中,D是
BC
的中点,AD交BC于点E,连接BD.
(1)列出图中所有相似三角形;
(2)连接DC,若在
BAC
上任取一点K(点A,B,C除外),连接CK,DK,DK交BC于点F,DC2=DF•DK是否成立?若成立,给出证明;若不成立,举例说明.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

某地有四个村庄E,F,G,H(其位置如图所示),现拟建一个电视信号中转站,信号覆盖的范围是以发射台为圆心的圆形区域.为了使这四个村庄的居民都能接收到电视信号,且使中转站所需发射功率最小(圆形区域半径越小,所需功率越小),此中转站应建在(  )
A.线段HF的中点处B.△GHE的外心处
C.△HEF的外心处D.△GEF的外心处

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在△ABC中,∠A=70°,若O为△ABC的外心,则∠BOC=______度;若O为△ABC的内心,则∠BOC=______度.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,Rt△ABC中,∠C=90°,⊙O为△ABC的内切圆,若AC=6,BC=8,求⊙O半径.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

一副三角板按如图方式摆放,且∠1比∠2大50°,则∠2的度数是______°.

查看答案和解析>>

同步练习册答案