精英家教网 > 初中数学 > 题目详情

观察下列等式:
13=12
13+23=32
13+23+33=62
13+23+33+43=102

想一想,等式的左边各项的底数与右边的底有什么关系猜一猜,可以引出什么规律

解:根据以上分析左边的底数的和等于右边底数,即第n行:1,2,3,4,…,n.1+2+3+4+…+n=n(n+1),
13+23+33+…+n3=[n(n+1)]2
分析:观察发现:在每个等式中,等式右边的幂的底数正好是等式左边各幂的底数的和.
点评:注意:1+2+3+4+…+n=n(n+1).连续的整数相加运用此方法可以简便计算.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

观察下列等式:
13=12
13+23=32
13+23+33=62
13+23+33+43=102

想一想等式左边各项幂的底数与右边幂的底数有什么关系?猜一猜可以引出什么规律,并把这种规律用等式写出来.
 

查看答案和解析>>

科目:初中数学 来源: 题型:

25、探索与思考
观察下列等式:13=12
13+23=32
13+23+33=62
13+23+33+43=102

(1)想一想:等式左边各项幂的底数与右边幂的底数有什么关系?
答:
等式左边各项幂的底数和等于右边幂的底数

(2)试一试:13+23+33+43+…+103=
552

(3)猜一猜:可得出什么规律:(可用带字母的等式表示,也可用文字表述)

查看答案和解析>>

科目:初中数学 来源: 题型:

观察下列等式:13=12,13+23=32,13+23+33=62,13+23+33+43=102
根据你观察得到的规律写出13+23+33+43+…+1003=
 
,并比较它与50002的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

观察下列等式
1+
1
3
=2
1
3
2+
1
4
=3
1
4
3+
1
5
=4
1
5
…,
a+
1
10
=b
1
10
,根据观察得出规律,计算ab=
72
72

查看答案和解析>>

科目:初中数学 来源: 题型:

观察下列等式:
1
3
+
2
=
(
3
-
2
)
(
3
+
2
)(
3
-
2
)
=
3
-
2
1
4
+
3
=
(
4
-
3
)
(
4
+
3
)(
4
-
3
)
=
4
-
3
,请你从上述等式中找出规律,并利用这一规律计算(
2
3
+
2
+
2
4
+
3
+
2
5
+
4
+
…+
2
2012
+
2011
)•(
2012
+
2
)=
4020
4020

查看答案和解析>>

同步练习册答案