【题目】如图所示,射线AM交一圆于点B,C,射线AN交该圆于点D,F,且BC=DE,求证:AC=AE.
科目:初中数学 来源: 题型:
【题目】如图,平面直角坐标系中,抛物线y=﹣x2+4x+m﹣4(m为常数)与y轴的交点为C,M(3,0)与N(0,﹣2)分别是x轴、y轴上的点
(1)当m=1时,求抛物线顶点坐标.
(2)若3≤x≤3+m时,函数y=﹣x2+4x+m﹣4有最小值﹣7,求m的值.
(3)若抛物线与线段MN有公共点,直接写出m的取值范围是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在梯形中,,,,.点是线段上的动点,点、分别是线段、上的点,且,联结、.
(1)求证:;
(2)当时,如果是以为腰的等腰三角形,求线段的长;
(3)当时,求的正切值.(用含的式子表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一艘船由A港沿北偏东65°方向航行90km至B港,然后再沿北偏西40°方向航行至C港,C港在A港北偏东20°方向,求A,C两港之间的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场销售一种成本为每件元的商品,销售过程中发现,每月销售量(件)与销售单价(元)之间的关系可近似看作一次函数.商场销售该商品每月获得利润为(元).
(1)求与之间的函数关系式;
(2)如果商场销售该商品每月想要获得元的利润,那么每件商品的销售单价应为多少元?
(3)商场每月要获得最大的利润,该商品的销售单价应为多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对实数a,b,定义运算“*”为:a*b=
(1)求函数y=x*(2x﹣1)的解析式;
(2)若点A(x1,y1)、B(x2,y2)(x1<x2)在函数y=x*(2x﹣1)的图象上,且A、B两点关于坐标原点成中心对称,求点A的坐标;
(3)关于x的方程x*(2x﹣1)=m恰有三个互不相等的实数根x1,x2,x3,且x1<x2<x3,设t=x1+2x2+x3+x1x2x3,则t的取值范围是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】两地相距,甲、乙两人从两地出发相向而行,甲先出发.图中表示两人离地的距离与时间的关系,结合图象,下列结论错误的是( )
A.是表示甲离地的距离与时间关系的图象
B.乙的速度是
C.两人相遇时间在
D.当甲到达终点时乙距离终点还有
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】由于雾霾天气趋于严重,我市某电器商城根据民众健康需求,代理销售某种家用空气净化器,其进价是200元/台.经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元,就可多售出50台.若供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务.
(1)完成下列表格,并直接写出月销售量y(台)与售价x(元/台)之间的函数关系式及售价x的取值范围;
售价(元/台) | 月销售量(台) |
400 | 200 |
250 | |
x |
(2)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w(元)最大?最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,线段,,,,点为射线上一点,平分交线段于点(不与端点,重合).
(1)当为锐角,且时,求四边形的面积;
(2)当与相似时,求线段的长;
(3)设,,求关于的函数关系式,并写出定义域.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com