【题目】一副三角尺按照如图所示摆放在量角器上,边与量角器刻度线重合,边与量角器刻度线重合,将三角尺绕量角器中心点以每秒的速度顺时针旋转,当边与刻度线重合时停止运动.设三角尺的运动时间为(秒)
(1)当秒时,边经过的量角器刻度线对应的度数为_ ;
(2) 秒时,边平分;
(3)若在三角尺开始旋转的同时,三角尺也绕点以每秒的速度逆时针旋转,当三角尺停止旋转时,三角尺也停止旋转,
①当为何值时,边平分;
【答案】(1)115°;(2)26.25;(3)①21秒,②秒或秒
【解析】
(1)秒时,边经过量角器刻度对应的度数是,由由旋转知,,进而即可得到答案;
(2)由旋转知,旋转角为度,根据题意,列出关于t的方程,即可求解;
(3)①类似(2)题方法,列出关于t的方程,即可求解;
②分两种情况:当边在边左侧时,当边在边右侧时,用含t的代数式分别表示出与,进而列出方程,即可求解.
当秒时,由旋转知,,
是等腰直角三角形,
,
即:秒时,边经过量角器刻度对应的度数是,
旋转秒时,边经过量角器刻度对应的度数是,
故答案为:;
由旋转知,旋转角为度,
边平分且,
,解得:,
故答案为:;
①同的方法得:,解得:;
②当边在边左侧时,
由旋转知,,,
,
,解得:,
当边在边右侧时,
由旋转知,,
或,
,
或,
解得:(不合题意舍去)或,
综上所述:秒或秒时,.
科目:初中数学 来源: 题型:
【题目】如图,是将抛物线y=-x2 平移后得到的抛物线,其对称轴为x=1,与x轴的一个交点为A(-1,0) ,另一交点为B,与y轴交点为C.
(1)求抛物线的函数表达式;
(2)若点N 为抛物线上一点,且BC⊥NC,求点N的坐标;
(3)点P是抛物线上一点,点Q是一次函数y=x+的图象上一点,若四边形OAPQ为平行四边形,这样的点P、Q是否存在?若存在,分别求出点P、Q的坐标,若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在一张矩形纸片ABCD中,AB=4,BC=8,点E,F分别在AD,BC上,将纸片ABCD沿直线EF折叠,点C落在AD上的一点H处,点D落在点G处,有以下四个结论:
①四边形CFHE是菱形;②线段BF的取值范围为3≤BF≤4;
③EC平分∠DCH;④当点H与点A重合时,EF=.
以上结论中,你认为正确的有______.(填序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线y=ax2+bx+1交y轴于点A,交x轴正半轴于点B(4,0) ,与过A点的直线相交于另一点D(3,) ,过点D作DC⊥x轴,垂足为C.
(1)求抛物线的表达式;
(2)点P在线段OC上(不与点O,C重合),过P作PN⊥x轴,交直线AD于M,交抛物线于点N,连接CM,求△PCM 面积的最大值;
(3)若P 是x 轴正半轴上的一动点,设OP 的长为t.是否存在t,使以点M,C,D,N 为顶点的四边形是平行四边形?若存在,求出t的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,则平移的距离和旋转角的度数分别为( )
A.4,30° B.2,60° C.1,30° D.3,60°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一元二次方程(x+1)(x﹣2)=10根的情况是( )
A. 无实数根 B. 有两个正根
C. 有两个根,且都大于﹣1 D. 有两个根,其中一根大于2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有一个盛水的圆柱体玻璃容器,它的底面半径为(容器厚度忽略不计),容器内水的高度为.
(1)如图1, 容器内水的体积为_ (结果保留).
(2)如图2,把一根半径为,高为的实心玻璃棒插入水中(玻璃棒完全淹没于水中),求水面上升的高度是多少?
(3)如图3,若把一根半径为,足够长的实心玻璃棒插入水中,求水面上升的高度是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学开展了“手机伴我健康行”主题活动.他们随机抽取部分学生进行“手机使用目的”和“每周使用手机时间”的问卷调查,并绘制成如图①②的统计图。已知“查资料”人人数是40人。
请你根据以上信息解答以下问题
(1)在扇形统计图中,“玩游戏”对应的圆心角度数是_______________。
(2)补全条形统计图
(3)该校共有学生1200人,估计每周使用手机时间在2小时以上(不含2小时)的人数
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某数学活动小组在做角的拓展图形练习时,经历了如下过程:
(1)操作发现:点为直线上一点,过点作射线,使将一直角三角板的直角顶点放在点处,一边在射线上,另一边在直线的下方,如图:将图1中的三角板绕点旋转,当直角三角板的边在的内部,且恰好平分时,如图2.则下列结论正确的是 (填序号即可).
①②③平分④的平分线在直线上
(2)数学思考:同学们在操作中发现,当三角板绕点旋转时,如果直角三角板的边在的内部且另一边在直线AB的下方,那么与的差不变,请你说明理由;如果直角三角板的、边都在的内部,那么与的和不变,请直接写出与的和,不要求说明理由.
(3)类比探索:三角板绕点继续旋转,当直角三角板的边在的内部时,如图3,求与相差多少度?为什么?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com