精英家教网 > 初中数学 > 题目详情

【题目】如图,四边形ABCD,∠A=110°,若点D在AB、AC的垂直平分线上,则∠BDC为( )

A.90°
B.110°
C.120°
D.140°

【答案】D
【解析】解:

连接AD,

∵点D在AB、AC的垂直平分线上,

∴BD=AD,DC=AD,

∴∠B=∠BAD,∠C=∠CAD,

∵∠BAC=110°=∠BAD+∠CAD,

∴∠B+∠C=110°,

∴∠BDC=360°﹣(∠B+∠C)﹣∠BAC=360°﹣110°﹣110°=140°,

所以答案是:D.

【考点精析】解答此题的关键在于理解线段垂直平分线的性质的相关知识,掌握垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线;线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,四边形中,上一点,分别以为折痕将两个角()向内折起,点恰好都落在边的点处.若,则________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算题计算:(﹣2017)0+|1﹣ |﹣2cos45°+(﹣ 2
(1)计算:(﹣2017)0+|1﹣ |﹣2cos45°+(﹣ 2
(2)解不等式组:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,ADBC边上的中线,EAD的中点,过点ABC的平行线与BE的延长线相交于点F,连接CF

1)求证:四边形CFAD为平行四边形.

2)若∠BAC90°AB4BD,请求出四边形CFAD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们知道:三角形的三条角平分线交于一点,这个点称为三角形的内心(三角形内切圆的圆心).现在规定:如果四边形的四个角的角平分线交于一点,我们把这个点也成为“四边形的内心”.
(1)试举出一个有内心的四边形.
(2)如图1,已知点O是四边形ABCD的内心,求证:AB+CD=AD+BC.

(3)如图2,Rt△ABC中,∠C=90°.O是△ABC的内心.若直线DE截边AC,BC于点D,E,且O仍然是四边形ABED的内心.这样的直线DE可画多少条?请在图2中画出一条符合条件的直线DE,并简单说明作法.

(4)问题(3)中,若AC=3,BC=4,满足条件的一条直线DE∥AB,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点是直线上第一象限的点,点的坐标是是坐标原点,的面积为,则关于的函数关系式(取值范围)是__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】近年来,各地“广场舞”噪音干扰的问题备受关注,相关人员对本地区15﹣65岁年龄段的500名市民进行了随机调查,在调查过程中对“广场舞”噪音干扰的态度有以下五种:A:没影响;B:影响不大;C:有影响,建议做无声运动,D:影响很大,建议取缔;E:不关心这个问题,将调查结果绘统计整理并绘制成如下两幅不完整的统计图.

请根据以上信息解答下列问题:
(1)填空m= , 态度为C所对应的圆心角的度数为
(2)补全条形统计图;
(3)若全区15﹣65岁年龄段有20万人,估计该地区对“广场舞”噪音干扰的态度为B的市民人数;
(4)若在这次调查的市民中,从态度为A的市民中抽取一人的年龄恰好在年龄段15﹣35岁的概率是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在矩形内放置正方形甲、正方形乙、等腰直角三角形丙,它们的摆放位置如图所示,已知,图中阴影部分的面积之和为31,则矩形的周长为___________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市在党中央实施“精准扶贫”政策的号召下,大力开展科技扶贫的惠农富农,老张在科技人员的指导下,改良柑橘品种,去年他家的柑橘喜获丰收,而且质优味美,客商闻讯前来采购,经协商:采购价y(元/吨)与采购量x(吨)之间的函数关系如图所示.

(1)求y与x之间的函数关系式;
(2)老张种植柑橘的成本是800元/吨,当客商采购量是多少时,老张在这次销售柑橘时获利最大?最大利润是多少?

查看答案和解析>>

同步练习册答案