精英家教网 > 初中数学 > 题目详情

如图1,已知△ABC中,AB=10cm,AC=8cm,BC=6cm.如果点P由B出发沿BA方向点A匀速运动,同时点Q由A出发沿AC方向向点C匀速运动,它们的速度均为2cm/s.连接PQ,设运动的时间为t(单位:s)(0≤t≤4).解答下列问题:

(1)当t为何值时,PQ∥BC.

(2)设△AQP面积为S(单位:cm2),求S与t的函数关系式

(3)是否存在某时刻t,使四边形BPQC的面积为△ABC面积的三分之二?若存在,求出此时t的值;若不存在,请说明理由.

(4)如图2,把△AQP沿AP翻折,得到四边形AQPQ′.那么是否存在某时刻t,使四边形AQPQ′为菱形?

 

【答案】

 

【解析】

试题分析:

(1)表示出AP、AQ,然后分∠AQP=90°和∠APQ=90°两种情况,利用∠A的余弦列式计算即可得解;

(2)先求出△ABC的面积,然后利用∠A的正弦求出点P到AQ的距离,再根据△APQ的面积公式列出方程,然后求出根的判别式△<0,确定不存在;

(3)根据菱形的对角相等,对角线平分一组对角可得关于AB翻折时,∠A=∠APQ,过点Q作QD⊥AB于D,根据等腰三角形三线合一的性质可得AD=AP,然后利用∠A的余弦列式求出t的值,再根据正弦求出DQ,然后根据S菱形=2S△APQ计算即可得解;关于AC翻折时,∠A=∠AQP,过点P作PE⊥AC于E,根据等腰三角形三线合一的性质可得AE=AQ,然后利用∠A的余弦列式求出t的值,再根据正弦求出PE,然后根据S菱形=2S△APQ计算即可得解.

(4)首先根据菱形的性质及相似三角形比例线段关系,求得PQ、QD和PD的长度;然后在Rt△PQD中,求得时间t的值;最后求菱形的面积,值得注意的是菱形的面积等于△AQP面积的2倍,从而可以利用(2)中△AQP面积的表达式,这样可以化简计算.

试题解析:

解:∵AB=10cm,AC=8cm,BC=6cm,

∴由勾股定理逆定理得△ABC为直角三角形,∠C为直角.

(1)BP=2t,则AP=10﹣2t.

∵PQ∥BC,

,即,解得t=

∵当t=s时,PQ∥BC.

(2)如答图1所示,过P点作PD⊥AC于点D.

∴PD∥BC,∴,即,解得PD=6﹣t.

 S=×AQ×PD=×2t×(6﹣t)=﹣t2+6t=﹣(t﹣2+

∴当t=s时,S取得最大值,最大值为cm2

(3)假设存在某时刻t,使线段PQ恰好把△ABC的面积平分,

则有S△AQP=S△ABC,而S△ABC=AC·BC=24,∴此时S△AQP=12.

由(2)可知,S△AQP=﹣t2+6t,

∴﹣t2+6t=12,化简得:t2﹣5t+10=0,

∵△=(﹣5)2﹣4×1×10=﹣15<0,此方程无解,

∴不存在某时刻t,使线段PQ恰好把△ABC的面积平分.

(4)假设存在时刻t,使四边形AQPQ′为菱形,则有AQ=PQ=BP=2t.

如答图2所示,过P点作PD⊥AC于点D,则有PD∥BC,

,即

解得:PD=6﹣t,AD=8﹣t,

∴QD=AD﹣AQ=8﹣t﹣2t=8﹣t.

在Rt△PQD中,由勾股定理得:QD2+PD2=PQ2

即(8﹣t)2+(6﹣t)2=(2t)2

化简得:13t2﹣90t+125=0,解得:t1=5,t2=

∵t=5s时,AQ=10cm>AC,不符合题意,舍去,∴t=

考点: 1.二次函数的解析式及二次函数的应用,2.二次函数的最大值和最小值,3.菱形的性质及判定

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网定义:若某个图形可分割为若干个都与他相似的图形,则称这个图形是自相似图形.
探究:
(1)如图甲,已知△ABC中∠C=90°,你能把△ABC分割成2个与它自己相似的小直角三角形吗?若能,请在图甲中画出分割线,并说明理由.
(2)一般地,“任意三角形都是自相似图形”,只要顺次连接三角形各边中点,则可将原三分割为四个都与它自己相似的小三角形.我们把△DEF(图乙)第一次顺次连接各边中点所进行的分割,称为1阶分割(如图1);把1阶分割得出的4个三角形再分别顺次连接它的各边中点所进行的分割,称为2阶分割(如图2)…依次规则操作下去.n阶分割后得到的每一个小三角形都是全等三角形(n为正整数),设此时小三角形的面积为SN
①若△DEF的面积为10000,当n为何值时,2<Sn<3?(请用计算器进行探索,要求至少写出三次的尝试估算过程)
②当n>1时,请写出一个反映Sn-1,Sn,Sn+1之间关系的等式.(不必证明)精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,若已知△ABC中,D、E分别为AB、AC的中点,则可得DE∥BC,且DE=
12
BC.根据上面的结论:
(1)你能否说出顺次连接任意四边形各边中点,可得到一个什么特殊四边形并说明理由;
(2)如果将(1)中的“任意四边形”改为条件是“平行四边形”或“菱形”或“矩形”或“等腰梯形”,那么它们的结论又分别怎样呢?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•德州)(1)如图1,已知△ABC,以AB、AC为边向△ABC外作等边△ABD和等边△ACE,连接BE,CD,请你完成图形,并证明:BE=CD;(尺规作图,不写作法,保留作图痕迹);
(2)如图2,已知△ABC,以AB、AC为边向外作正方形ABFD和正方形ACGE,连接BE,CD,BE与CD有什么数量关系?简单说明理由;
(3)运用(1)、(2)解答中所积累的经验和知识,完成下题:
如图3,要测量池塘两岸相对的两点B,E的距离,已经测得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)添线补全如图1几何体的三视图.

(2)如图2,已知△ABC.请你确定一点P,使PB=PC,且点P到∠B的两边距离相等.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,已知△ABC中,AB=BC=1,∠ABC=90°,把一块含30°角的直角三角板DEF的直角顶点D放在AC的中点上(直角三角板的短直角边为DE,长直角边为DF),将直角三角板DEF绕D点按逆时针方向旋转.
(1)在图1中,DE交边AB于M,DF交边BC于N
①证明:DM=DN
②在这一旋转过程中,直角三角板DEF与△ABC的重叠部分为四边形DMBN,请说明四边形DMBN的面积是否发生变化?若发生变化,请说明是如何变化的?若不发生变化,求出其面积
(2)继续旋转至如图2的位置,延长AB交DE于M,延长BC交DF于N,DM=DN是否仍然成立?若成立,请给出证明;若不成立,请说明理由.

查看答案和解析>>

同步练习册答案