如图1,已知△ABC中,AB=10cm,AC=8cm,BC=6cm.如果点P由B出发沿BA方向点A匀速运动,同时点Q由A出发沿AC方向向点C匀速运动,它们的速度均为2cm/s.连接PQ,设运动的时间为t(单位:s)(0≤t≤4).解答下列问题:
(1)当t为何值时,PQ∥BC.
(2)设△AQP面积为S(单位:cm2),求S与t的函数关系式
(3)是否存在某时刻t,使四边形BPQC的面积为△ABC面积的三分之二?若存在,求出此时t的值;若不存在,请说明理由.
(4)如图2,把△AQP沿AP翻折,得到四边形AQPQ′.那么是否存在某时刻t,使四边形AQPQ′为菱形?
【解析】
试题分析:
(1)表示出AP、AQ,然后分∠AQP=90°和∠APQ=90°两种情况,利用∠A的余弦列式计算即可得解;
(2)先求出△ABC的面积,然后利用∠A的正弦求出点P到AQ的距离,再根据△APQ的面积公式列出方程,然后求出根的判别式△<0,确定不存在;
(3)根据菱形的对角相等,对角线平分一组对角可得关于AB翻折时,∠A=∠APQ,过点Q作QD⊥AB于D,根据等腰三角形三线合一的性质可得AD=AP,然后利用∠A的余弦列式求出t的值,再根据正弦求出DQ,然后根据S菱形=2S△APQ计算即可得解;关于AC翻折时,∠A=∠AQP,过点P作PE⊥AC于E,根据等腰三角形三线合一的性质可得AE=AQ,然后利用∠A的余弦列式求出t的值,再根据正弦求出PE,然后根据S菱形=2S△APQ计算即可得解.
(4)首先根据菱形的性质及相似三角形比例线段关系,求得PQ、QD和PD的长度;然后在Rt△PQD中,求得时间t的值;最后求菱形的面积,值得注意的是菱形的面积等于△AQP面积的2倍,从而可以利用(2)中△AQP面积的表达式,这样可以化简计算.
试题解析:
解:∵AB=10cm,AC=8cm,BC=6cm,
∴由勾股定理逆定理得△ABC为直角三角形,∠C为直角.
(1)BP=2t,则AP=10﹣2t.
∵PQ∥BC,
∴,即,解得t=,
∵当t=s时,PQ∥BC.
(2)如答图1所示,过P点作PD⊥AC于点D.
∴PD∥BC,∴,即,解得PD=6﹣t.
S=×AQ×PD=×2t×(6﹣t)=﹣t2+6t=﹣(t﹣)2+,
∴当t=s时,S取得最大值,最大值为cm2.
(3)假设存在某时刻t,使线段PQ恰好把△ABC的面积平分,
则有S△AQP=S△ABC,而S△ABC=AC·BC=24,∴此时S△AQP=12.
由(2)可知,S△AQP=﹣t2+6t,
∴﹣t2+6t=12,化简得:t2﹣5t+10=0,
∵△=(﹣5)2﹣4×1×10=﹣15<0,此方程无解,
∴不存在某时刻t,使线段PQ恰好把△ABC的面积平分.
(4)假设存在时刻t,使四边形AQPQ′为菱形,则有AQ=PQ=BP=2t.
如答图2所示,过P点作PD⊥AC于点D,则有PD∥BC,
∴,即,
解得:PD=6﹣t,AD=8﹣t,
∴QD=AD﹣AQ=8﹣t﹣2t=8﹣t.
在Rt△PQD中,由勾股定理得:QD2+PD2=PQ2,
即(8﹣t)2+(6﹣t)2=(2t)2,
化简得:13t2﹣90t+125=0,解得:t1=5,t2=,
∵t=5s时,AQ=10cm>AC,不符合题意,舍去,∴t=.
考点: 1.二次函数的解析式及二次函数的应用,2.二次函数的最大值和最小值,3.菱形的性质及判定
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
1 | 2 |
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com